About the Authors |
|
xi | |
Preface |
|
xiii | |
|
|
xv | |
|
|
xix | |
|
|
xxi | |
|
|
xxiii | |
|
|
1 | (8) |
|
|
3 | (3) |
|
1.1.1 Energy management system |
|
|
3 | (1) |
|
1.1.2 Phasor measurement units (PMUs) |
|
|
4 | (1) |
|
1.1.3 Flexible AC transmission system (FACTS) |
|
|
4 | (1) |
|
1.1.4 Wide-area measurements and wide-area control |
|
|
4 | (1) |
|
1.1.5 Dynamic state estimation (DSE) and dynamic control |
|
|
5 | (1) |
|
1.2 Static state estimation (SSE) versus dynamic state estimation (DSE) |
|
|
6 | (1) |
|
1.3 Challenges to power system dynamic estimation and control |
|
|
6 | (1) |
|
|
7 | (2) |
|
2 Power System Modeling, Simulation, and Control Design |
|
|
9 | (26) |
|
|
9 | (8) |
|
2.1.1 Generating unit: a generator and its excitation system |
|
|
10 | (3) |
|
2.1.2 Power system stabilizers (PSSs) |
|
|
13 | (1) |
|
2.1.3 FACTS control devices |
|
|
13 | (2) |
|
2.1.4 Loads, network interface, and network equations |
|
|
15 | (2) |
|
2.2 Power system simulation and analysis |
|
|
17 | (18) |
|
|
17 | (2) |
|
2.2.2 Initialization and time-domain simulation |
|
|
19 | (4) |
|
2.2.3 Linear analysis and basics of control design |
|
|
23 | (12) |
|
3 Centralized Dynamic Estimation and Control |
|
|
35 | (26) |
|
3.1 NCPS modeling with output feedback |
|
|
37 | (6) |
|
3.1.1 State space representation of power system |
|
|
38 | (1) |
|
3.1.2 Sensors and actuators |
|
|
39 | (1) |
|
3.1.3 Communication protocol, packet delay, and packet dropout |
|
|
39 | (2) |
|
|
41 | (1) |
|
|
42 | (1) |
|
3.2 Closed-loop stability and damping response |
|
|
43 | (5) |
|
3.2.1 Stability analysis framework of a jump linear system |
|
|
44 | (3) |
|
3.2.2 Physical significance of the developed LMIs |
|
|
47 | (1) |
|
3.3 Case study: 68-bus 16-machine 5-area NCP5 |
|
|
48 | (9) |
|
|
48 | (1) |
|
3.3.2 Simulation results and discussion |
|
|
49 | (8) |
|
|
57 | (2) |
|
|
59 | (2) |
|
4 Decentralized Dynamic Estimation Using PMUs |
|
|
61 | (32) |
|
4.1 Problem statement and methodology in brief |
|
|
62 | (2) |
|
|
63 | (1) |
|
|
63 | (1) |
|
4.2 Power system modeling and discrete DAEs |
|
|
64 | (4) |
|
|
65 | (1) |
|
|
66 | (1) |
|
4.2.3 Power system stabilizer (PSS) |
|
|
67 | (1) |
|
|
67 | (1) |
|
4.3 Pseudoinputs and decentralization of DAEs |
|
|
68 | (4) |
|
4.4 Unscented Kalman filter (UKF) |
|
|
72 | (1) |
|
4.4.1 Generation of sigma points |
|
|
72 | (1) |
|
|
72 | (1) |
|
4.4.3 Measurement prediction |
|
|
73 | (1) |
|
|
73 | (1) |
|
4.5 Case study: 68-bus test system |
|
|
73 | (12) |
|
|
76 | (3) |
|
4.5.2 Simulation results and discussion |
|
|
79 | (6) |
|
|
85 | (3) |
|
4.7 Other PMU-based methods of DSE |
|
|
88 | (1) |
|
|
89 | (4) |
|
5 Dynamic Parameter Estimation of Analogue Voltage and Current Signals |
|
|
93 | (12) |
|
5.1 Interpolated DFT-based estimation |
|
|
93 | (4) |
|
5.1.1 Expressions for mean values of the parameter estimates |
|
|
95 | (2) |
|
5.2 Variance of para meter estimates |
|
|
97 | (2) |
|
5.2.1 Cramer-Rao bounds for the parameters |
|
|
97 | (2) |
|
5.2.2 Expressions for variance of the parameter estimates |
|
|
99 | (1) |
|
5.3 Implementation example |
|
|
99 | (5) |
|
|
104 | (1) |
|
6 Decentralized Dynamic Estimation Using CTs/VTs |
|
|
105 | (16) |
|
6.1 Decoupled power system equations after incorporating internal angle |
|
|
106 | (2) |
|
6.2 Two-stage estimation based on interpolated DFT and UKF |
|
|
108 | (3) |
|
|
111 | (7) |
|
6.3.1 Simulation parameters |
|
|
111 | (1) |
|
6.3.2 Estimation accuracy |
|
|
112 | (2) |
|
6.3.3 Estimation in the presence of colored noise |
|
|
114 | (2) |
|
6.3.4 Computational feasibility |
|
|
116 | (2) |
|
6.4 Extension to an unbalanced system |
|
|
118 | (1) |
|
|
119 | (2) |
|
7 Control Based on Dynamic Estimation: Linear and Nonlinear Theories |
|
|
121 | (20) |
|
7.1 Linear optimal control |
|
|
121 | (16) |
|
|
122 | (1) |
|
7.1.2 Classical LQR control |
|
|
123 | (1) |
|
7.1.3 Linear quadratic control for systems with exogenous inputs |
|
|
123 | (7) |
|
7.1.4 Implementation example: a third-order LTI system |
|
|
130 | (7) |
|
7.2 Nonlinear optimal control |
|
|
137 | (3) |
|
7.2.1 Basics of control using normal forms |
|
|
137 | (3) |
|
|
140 | (1) |
|
8 Decentralized Linear Control Using DSE and ELQR |
|
|
141 | (24) |
|
8.1 Architecture of control |
|
|
141 | (3) |
|
8.2 Decentralization of control |
|
|
144 | (8) |
|
8.2.1 Details of state matrices used in integrated ELQR |
|
|
146 | (6) |
|
8.3 Integrated ELQR control |
|
|
152 | (3) |
|
|
153 | (2) |
|
|
155 | (9) |
|
|
155 | (3) |
|
8.4.2 Control performance |
|
|
158 | (1) |
|
8.4.3 Robustness to different operating conditions |
|
|
159 | (1) |
|
8.4.4 Control efforts and state costs |
|
|
159 | (1) |
|
8.4.5 Comparison with centralized wide area-based control |
|
|
160 | (3) |
|
8.4.6 Effect of noise/bad data on control performance |
|
|
163 | (1) |
|
8.4.7 Computational feasibility |
|
|
163 | (1) |
|
|
164 | (1) |
|
9 Decentralized Nonlinear Control Using DSE & Normal Forms |
|
|
165 | (28) |
|
9.1 Normal form of power system dynamics |
|
|
166 | (9) |
|
|
170 | (1) |
|
9.1.2 Linearized dynamics |
|
|
171 | (1) |
|
|
171 | (4) |
|
9.2 Asymptotic stability of zero dynamics |
|
|
175 | (2) |
|
9.3 Overall stability and control expression |
|
|
177 | (2) |
|
9.4 Decentralized dynamic state estimation |
|
|
179 | (11) |
|
9.5.1 Case A: Assessment of small signal stability |
|
|
180 | (6) |
|
9.5.2 Case B: Assessment of transient stability |
|
|
186 | (2) |
|
9.5.3 Discussion on the magnitude of the control input and the control performance |
|
|
188 | (2) |
|
9.5.4 Computational feasibility |
|
|
190 | (1) |
|
|
190 | (3) |
|
|
193 | (2) |
|
A Description of the 16-Machine, 68-Bus, 5-Area Test System |
|
|
195 | (8) |
|
|
196 | (7) |
|
|
196 | (2) |
|
|
198 | (2) |
|
|
200 | (1) |
|
A.1.4 Excitation system parameters |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (1) |
|
B Dynamic State Estimation Plots for Unit 3 and Unit 9 |
|
|
203 | (12) |
|
C Level-2 S-Function Used in Integrated ELQR |
|
|
215 | (6) |
Bibliography |
|
221 | (8) |
Index |
|
229 | |