Preface |
|
xiii | |
Acknowledgements |
|
xv | |
Acronyms |
|
xvii | |
About the Companion Website |
|
xix | |
|
|
1 | (22) |
|
|
1 | (1) |
|
|
2 | (19) |
|
1.2.1 Free-Falling Object |
|
|
2 | (2) |
|
1.2.1.1 First Program in Matlab |
|
|
4 | (6) |
|
1.2.1.2 First Program in Python |
|
|
10 | (4) |
|
1.2.2 Ligand-Receptor Interactions |
|
|
14 | (7) |
|
1.3 Organization of the Book |
|
|
21 | (2) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2 Attitude Estimation and Control |
|
|
23 | (96) |
|
2.1 Attitude Kinematics and Sensors |
|
|
23 | (41) |
|
2.1.1 Solve Quaternion Kinematics |
|
|
26 | (1) |
|
|
26 | (3) |
|
|
29 | (4) |
|
2.1.2 Gyroscope Sensor Model |
|
|
33 | (1) |
|
2.1.2.1 Zero-Mean Gaussian White Noise |
|
|
33 | (1) |
|
2.1.2.2 Generate Random Numbers |
|
|
34 | (6) |
|
2.1.2.3 Stochastic Process |
|
|
40 | (1) |
|
|
41 | (4) |
|
|
45 | (4) |
|
2.1.2.6 Gyroscope White Noise |
|
|
49 | (1) |
|
2.1.2.7 Gyroscope Random Walk Noise |
|
|
50 | (3) |
|
2.1.2.8 Gyroscope Simulation |
|
|
53 | (4) |
|
2.1.3 Optical Sensor Model |
|
|
57 | (7) |
|
2.2 Attitude Estimation Algorithm |
|
|
64 | (24) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (9) |
|
2.2.4 Extended Kalman Filter |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
2.2.4.3 Noise Propagation in Error Dynamics |
|
|
78 | (6) |
|
2.2.4.4 State Transition Matrix, Φ |
|
|
84 | (1) |
|
2.2.4.5 Vector Measurements |
|
|
84 | (2) |
|
|
86 | (1) |
|
2.2.4.7 Kalman Filter Update |
|
|
86 | (1) |
|
2.2.4.8 Kalman Filter Propagation |
|
|
87 | (1) |
|
2.3 Attitude Dynamics and Control |
|
|
88 | (31) |
|
2.3.1 Dynamics Equation of Motion |
|
|
88 | (3) |
|
|
91 | (3) |
|
|
94 | (1) |
|
2.3.2 Actuator and Control Algorithm |
|
|
95 | (3) |
|
|
98 | (3) |
|
|
101 | (2) |
|
2.3.2.3 Attitude Control Algorithm |
|
|
103 | (2) |
|
2.3.2.4 Altitude Control Algorithm |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
2.3.2.7 Robustness Analysis |
|
|
107 | (3) |
|
2.3.2.8 Parallel Processing |
|
|
110 | (3) |
|
|
113 | (2) |
|
|
115 | (4) |
|
3 Autonomous Vehicle Mission Planning |
|
|
119 | (66) |
|
|
119 | (26) |
|
3.1.1 Potential Field Method |
|
|
119 | (3) |
|
|
122 | (4) |
|
|
126 | (1) |
|
3.1.2 Graph Theory-Based Sampling Method |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (1) |
|
3.1.2.3 Dijkstra's Shortest Path Algorithm |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (3) |
|
|
134 | (1) |
|
|
135 | (6) |
|
|
141 | (4) |
|
3.2 Moving Target Tracking |
|
|
145 | (22) |
|
3.2.1 UAV and Moving Target Model |
|
|
145 | (3) |
|
3.2.2 Optimal Target Tracking Problem |
|
|
148 | (1) |
|
|
149 | (2) |
|
|
151 | (2) |
|
3.2.2.3 Worst-Case Scenario |
|
|
153 | (4) |
|
|
157 | (2) |
|
|
159 | (5) |
|
3.2.2.6 Optimal Control Input |
|
|
164 | (3) |
|
3.3 Tracking Algorithm Implementation |
|
|
167 | (18) |
|
|
167 | (1) |
|
3.3.1.1 Minimum Turn Radius Constraints |
|
|
167 | (2) |
|
3.3.1.2 Velocity Constraints |
|
|
169 | (3) |
|
|
172 | (1) |
|
3.3.2.1 Control Input Sampling |
|
|
172 | (3) |
|
3.3.2.2 Inside the Constraints |
|
|
175 | (2) |
|
|
177 | (3) |
|
3.3.3 Verification Simulation |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
182 | (3) |
|
4 Biological System Modelling |
|
|
185 | (66) |
|
4.1 Biomolecular Interactions |
|
|
185 | (1) |
|
4.2 Deterministic Modelling |
|
|
185 | (42) |
|
4.2.1 Group of Cells and Multiple Experiments |
|
|
186 | (2) |
|
4.2.1.1 Model Fitting and the Measurements |
|
|
188 | (2) |
|
4.2.1.2 Finding Adaptive Parameters |
|
|
190 | (1) |
|
4.2.2 E. coli Tryptophan Regulation Model |
|
|
191 | (3) |
|
4.2.2.1 Steady-State and Dependant Parameters |
|
|
194 | (1) |
|
4.2.2.2 Pade Approximation of Time-Delay |
|
|
195 | (1) |
|
4.2.2.3 State-Space Realization |
|
|
196 | (9) |
|
|
205 | (1) |
|
4.2.2.5 Model Parameter Ranges |
|
|
206 | (7) |
|
4.2.2.6 Model Fitting Optimization |
|
|
213 | (8) |
|
4.2.2.7 Optimal Solution (MATLAB) |
|
|
221 | (2) |
|
4.2.2.8 Optimal Solution (Python) |
|
|
223 | (3) |
|
4.2.2.9 Adaptive Parameters |
|
|
226 | (1) |
|
|
226 | (1) |
|
4.3 Biological Oscillation |
|
|
227 | (24) |
|
4.3.1 Gillespie's Direct Method |
|
|
231 | (3) |
|
4.3.2 Simulation Implementation |
|
|
234 | (7) |
|
4.3.3 Robustness Analysis |
|
|
241 | (4) |
|
|
245 | (1) |
|
|
246 | (5) |
|
5 Biological System Control |
|
|
251 | (44) |
|
5.1 Control Algorithm Implementation |
|
|
251 | (18) |
|
|
251 | (1) |
|
|
252 | (1) |
|
5.1.1.2 Proportional Term |
|
|
253 | (1) |
|
5.1.1.3 Summation of the Proportional and the Integral Terms |
|
|
253 | (1) |
|
5.1.1.4 Approximated PI Controller |
|
|
253 | (1) |
|
5.1.1.5 Comparison of PI Controller and the Approximation |
|
|
254 | (6) |
|
5.1.2 Error Calculation: AP |
|
|
260 | (9) |
|
5.2 Robustness Analysis: μ-Analysis |
|
|
269 | (26) |
|
|
269 | (3) |
|
|
272 | (3) |
|
|
275 | (3) |
|
5.2.1.3 Complex Numbers in MATLAB/Python |
|
|
278 | (2) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (9) |
|
5.2.2.3 μ-Upper Bound: Geometric Approach |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (3) |
|
|
295 | (6) |
|
|
295 | (1) |
|
6.2 Network Structure Analysis |
|
|
296 | (1) |
|
6.3 Spatial-Temporal Dynamics |
|
|
297 | (1) |
|
6.4 Deep Learning Neural Network |
|
|
298 | (1) |
|
6.5 Reinforcement Learning |
|
|
298 | (3) |
|
|
298 | (3) |
|
Appendix A Solutions for Selected Exercises |
|
|
301 | (6) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
304 | (3) |
|
|
304 | (1) |
|
|
304 | (3) |
Index |
|
307 | |