Preface |
|
vii | |
|
|
1 | (34) |
|
|
|
|
|
1 | (4) |
|
1.2 Models with Different Types of Heterogeneity |
|
|
5 | (3) |
|
1.3 Least Squares Estimation of the Models |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
13 | (6) |
|
1.5.1 The Equivalence of the LSDV and the Within Estimator |
|
|
13 | (2) |
|
1.5.2 Incomplete Panels and the Within Estimator |
|
|
15 | (4) |
|
1.6 Heteroscedasticity and Cross-correlation |
|
|
19 | (5) |
|
1.6.1 The New Covariance Matrices and the GLS Estimator |
|
|
20 | (1) |
|
1.6.2 Estimation of the Variance Components and the Cross Correlations |
|
|
21 | (3) |
|
1.7 Extensions to Higher Dimensions |
|
|
24 | (3) |
|
1.7.1 Different Forms of Heterogeneity |
|
|
24 | (1) |
|
1.7.2 Least Squares and the Within Estimators |
|
|
25 | (1) |
|
|
25 | (2) |
|
1.8 Varying Coefficients Models |
|
|
27 | (3) |
|
|
30 | (5) |
|
|
35 | (36) |
|
|
|
|
|
|
35 | (1) |
|
2.2 Different Model Specifications |
|
|
36 | (8) |
|
2.2.1 Various Heterogeneity Formulations |
|
|
37 | (2) |
|
2.2.2 Spectral Decomposition of the Covariance Matrices |
|
|
39 | (5) |
|
|
44 | (5) |
|
|
49 | (8) |
|
2.4.1 Structure of the Covariance Matrices |
|
|
49 | (3) |
|
2.4.2 The Inverse of the Covariance Matrices |
|
|
52 | (2) |
|
2.4.3 Estimation of the Variance Components |
|
|
54 | (3) |
|
|
57 | (3) |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
62 | (3) |
|
|
65 | (1) |
|
Example for normalizing with 1: Model (2.14), T → ∞ |
|
|
65 | (1) |
|
Example for normalizing with √N1N2/A: Model (2.2), N1, N2 → ∞ |
|
|
66 | (1) |
|
Appendix 2 Proof of formula (2.19) |
|
|
66 | (1) |
|
Appendix 3 Inverse of (2.34), and the estimation of the variance components |
|
|
67 | (4) |
|
3 Models with Endogenous Regressors |
|
|
71 | (30) |
|
|
|
|
|
|
72 | (2) |
|
3.2 The Hausman-Taylor-like Instrument Variable Estimator |
|
|
74 | (13) |
|
|
74 | (1) |
|
3.2.2 Sources of Endogeneity |
|
|
75 | (1) |
|
3.2.3 The Hausman-Taylor Estimator |
|
|
76 | (4) |
|
3.2.4 Time Varying Individual Specific Effects |
|
|
80 | (5) |
|
|
85 | (1) |
|
3.2.6 Using External Instruments |
|
|
86 | (1) |
|
3.3 The Non-linear Generalized Method of Moments Estimator |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (4) |
|
3.5.1 Testing for Endogeneity |
|
|
90 | (1) |
|
3.5.2 Testing for Instrument Validity |
|
|
91 | (1) |
|
3.5.3 Testing in the Case of Fixed Effects |
|
|
92 | (2) |
|
3.6 Further Considerations |
|
|
94 | (2) |
|
|
94 | (1) |
|
3.6.2 Notes on Higher-dimensional Panels |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (4) |
|
4 Dynamic Models and Reciprocity |
|
|
101 | (24) |
|
|
|
|
|
101 | (2) |
|
|
103 | (6) |
|
|
104 | (3) |
|
4.2.2 Monte Carlo Experiments |
|
|
107 | (2) |
|
|
109 | (5) |
|
|
110 | (2) |
|
|
112 | (1) |
|
|
113 | (1) |
|
4.4 Combining Dynamics and Reciprocity |
|
|
114 | (3) |
|
4.4.1 Monte Carlo Experiments |
|
|
116 | (1) |
|
|
117 | (2) |
|
4.5.1 Generalized Reciprocity |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (4) |
|
5 Random Coefficients Models |
|
|
125 | (38) |
|
|
|
|
|
125 | (3) |
|
5.2 The Linear Model for Three Dimensions |
|
|
128 | (9) |
|
|
128 | (1) |
|
5.2.2 Feasible Generalized Least Squares (FGLS) |
|
|
129 | (1) |
|
5.2.3 Method 1: Using Within Dimensions Variation |
|
|
130 | (3) |
|
5.2.4 Method 2: Using the Overall Variation |
|
|
133 | (2) |
|
5.2.5 Minimum Norm Quadratic Unbiased Estimation (MINQUE) |
|
|
135 | (1) |
|
5.2.6 Properties of the Estimators |
|
|
136 | (1) |
|
5.3 Maximum Likelihood Estimation |
|
|
137 | (2) |
|
5.3.1 The Unrestricted Maximum Likelihood |
|
|
137 | (1) |
|
5.3.2 Restricted Maximum Likelihood Estimation |
|
|
138 | (1) |
|
5.4 Inference: Varying (Random) or Constant Coefficients? |
|
|
139 | (6) |
|
5.4.1 Testing for Methods 1 and 2 |
|
|
139 | (4) |
|
5.4.2 Testing in the Case of MLE |
|
|
143 | (2) |
|
5.5 Prediction of the Coefficients |
|
|
145 | (1) |
|
|
146 | (1) |
|
5.7 Extensions within the Linear Model |
|
|
147 | (8) |
|
5.7.1 Alternative Model Formulations |
|
|
147 | (2) |
|
|
149 | (1) |
|
5.7.3 Cross-Sectional Dependence |
|
|
150 | (2) |
|
5.7.4 Random Coefficients Correlated with the Explanatory Variables |
|
|
152 | (1) |
|
5.7.5 Some Random and Some "Fixed" Coefficients? |
|
|
153 | (1) |
|
|
154 | (1) |
|
5.8 Non-linear Extension: RC Probit Model |
|
|
155 | (1) |
|
5.9 A Simulation Experiment |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
159 | (4) |
|
6 Discrete Response Models |
|
|
163 | (32) |
|
|
|
163 | (1) |
|
6.2 Fixed Effects Binary Choice Models |
|
|
164 | (14) |
|
|
165 | (1) |
|
6.2.2 Problems with Non-linear Fixed Effects Models |
|
|
166 | (3) |
|
6.2.3 Elimination of Fixed Effects |
|
|
169 | (7) |
|
6.2.4 Caveats of the Procedure |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (6) |
|
6.3.1 Parametric Approach |
|
|
180 | (1) |
|
6.3.2 Semi-Parametric Approach |
|
|
181 | (2) |
|
6.3.3 Non-Parametric Approach |
|
|
183 | (1) |
|
6.4 Fixed Effects Multinomial Choice Models |
|
|
184 | (2) |
|
|
186 | (3) |
|
|
189 | (6) |
|
7 Nonparametric Models with Random Effects |
|
|
195 | (44) |
|
|
|
|
|
195 | (2) |
|
7.2 The Pooled Local Linear Estimator |
|
|
197 | (7) |
|
7.3 Two-step Local Linear Estimator |
|
|
204 | (9) |
|
7.3.1 Weighted Local Linear Estimator |
|
|
205 | (2) |
|
|
207 | (6) |
|
7.4 Pairwise Random Effects |
|
|
213 | (17) |
|
7.4.1 Cases (i)--(iii): The Sample Size Increases in One Index Only |
|
|
215 | (3) |
|
7.4.2 Cases (iv)-(vi): The Sample Size Increases in Two out of the Three Indices |
|
|
218 | (5) |
|
7.4.3 Case (vii): The Sample Size Increases in All Three Indices |
|
|
223 | (7) |
|
|
230 | (4) |
|
7.5.1 Mixed Fixed and Random Effects Models |
|
|
230 | (2) |
|
7.5.2 Four and Higher-dimensional Cases |
|
|
232 | (1) |
|
7.5.3 Fixed Effects Models |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
236 | (3) |
|
8 Multi-dimensional Panels in Quantile Regression Models |
|
|
239 | (24) |
|
|
|
|
239 | (2) |
|
|
241 | (11) |
|
8.2.1 Estimation and Implementation |
|
|
244 | (1) |
|
8.2.2 Inference Procedures |
|
|
245 | (3) |
|
8.2.3 Smoothed Quantile Regression Panel Data |
|
|
248 | (4) |
|
8.3 Random Effects Models |
|
|
252 | (5) |
|
|
253 | (2) |
|
8.3.2 Estimation and Implementation |
|
|
255 | (1) |
|
8.3.3 Inference Procedures |
|
|
256 | (1) |
|
8.4 Correlated Random Effects Models |
|
|
257 | (1) |
|
8.5 Specific Guidelines for Practitioners |
|
|
258 | (1) |
|
|
259 | (4) |
|
9 Models for Spatial Panels |
|
|
263 | (28) |
|
|
|
|
263 | (2) |
|
|
265 | (6) |
|
|
265 | (3) |
|
9.2.2 Unobserved Heterogeneity |
|
|
268 | (3) |
|
9.3 Spatial Estimation Methods |
|
|
271 | (8) |
|
9.3.1 Maximum Likelihood Estimation |
|
|
271 | (2) |
|
9.3.2 GMM, FGLS and Instrumental Variables Approaches |
|
|
273 | (6) |
|
9.4 Testing for Spatial Dependence |
|
|
279 | (1) |
|
9.5 Prediction with Spatial Models |
|
|
280 | (2) |
|
|
282 | (2) |
|
9.6.1 Heterogenous Coefficients Spatial Models |
|
|
282 | (2) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (6) |
|
10 Modelling in the Presence of Cross-sectional Error Dependence |
|
|
291 | (32) |
|
|
|
|
|
|
291 | (3) |
|
10.2 3D Models with Cross-sectional Error Dependence |
|
|
294 | (5) |
|
10.3 Cross-sectional Dependence (CD) Test |
|
|
299 | (5) |
|
|
304 | (7) |
|
|
304 | (5) |
|
10.4.2 4D Model Extensions |
|
|
309 | (2) |
|
10.5 Monte Carlo Analysis |
|
|
311 | (1) |
|
10.6 Empirical Application to the Gravity Model of the Intra-EU Trade |
|
|
312 | (7) |
|
|
319 | (1) |
|
|
319 | (4) |
|
11 The Estimation of Gravity Models in International Trade |
|
|
323 | (26) |
|
|
|
|
|
323 | (1) |
|
11.2 Generic Theoretical Background |
|
|
324 | (4) |
|
11.3 Specific Problems with Estimating Gravity Models |
|
|
328 | (15) |
|
11.3.1 Heteroskedasticity |
|
|
329 | (1) |
|
11.3.2 Modelling the Mass Point at Zero Bilateral Trade Flows |
|
|
330 | (2) |
|
|
332 | (1) |
|
11.3.4 Spatial Data: Interdependence of Bilateral Trade Flows Conditional on Exogenous Determinants |
|
|
333 | (3) |
|
11.3.5 Endogenous Regressors |
|
|
336 | (5) |
|
|
341 | (2) |
|
|
343 | (1) |
|
|
343 | (6) |
|
12 Modelling Housing Using Multi-dimensional Panel Data |
|
|
349 | (28) |
|
|
|
|
349 | (1) |
|
12.2 Discrete Choice Models and Hedonic Price Functions: A Quick Overview |
|
|
350 | (3) |
|
12.3 Multi-dimensional Models of Housing Hedonic Price Functions: Some Examples |
|
|
353 | (7) |
|
12.4 Multi-dimensional Models of Residential Mobility and Location Choice: Some Examples |
|
|
360 | (6) |
|
12.5 Multi-dimensional Dynamic Models of Housing Models |
|
|
366 | (5) |
|
|
371 | (1) |
|
|
372 | (5) |
|
|
377 | (20) |
|
|
13.1 Introduction and Objectives |
|
|
377 | (1) |
|
13.2 Micro-foundations of the Gravity Model of Migration |
|
|
378 | (2) |
|
13.3 Data Limitations and Estimation Issues |
|
|
380 | (11) |
|
13.3.1 Data and Measurement Issues |
|
|
380 | (1) |
|
13.3.2 Missing and Incomplete Data |
|
|
381 | (1) |
|
|
382 | (2) |
|
13.3.4 Multilateral Resistance to Migration |
|
|
384 | (2) |
|
|
386 | (1) |
|
|
387 | (4) |
|
|
391 | (2) |
|
|
393 | (4) |
|
14 Modeling Heterogeneity in Country-Industry-Year Panel Data: Two Illustrative Econometric Analyses |
|
|
397 | (30) |
|
|
|
|
397 | (3) |
|
14.2 ICT, R&D, and Productivity |
|
|
400 | (9) |
|
|
400 | (1) |
|
|
401 | (1) |
|
14.2.3 Discussion of the Dynamic Specification |
|
|
402 | (1) |
|
14.2.4 Three-dimensional Structure and Fixed Effects |
|
|
403 | (3) |
|
14.2.5 Heterogeneity of Factor Effects |
|
|
406 | (2) |
|
14.2.6 Discussion of Cointegration |
|
|
408 | (1) |
|
14.3 Productivity Impact of Non-Manufacturing Regulations |
|
|
409 | (7) |
|
|
409 | (1) |
|
|
410 | (1) |
|
14.3.3 Estimation Strategy with 2D Explanatory Variables |
|
|
411 | (2) |
|
14.3.4 Estimation Results |
|
|
413 | (2) |
|
14.3.5 Discussion of Heterogeneous Effects with 2D Explanatory Variables |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
417 | (2) |
|
|
419 | (8) |
|
|
419 | (3) |
|
Appendix 2 Supplementary Estimation Tables |
|
|
422 | (5) |
|
15 The Determinants of Consumer Price Dispersion: Evidence from French Supermarkets |
|
|
427 | (24) |
|
|
|
|
|
427 | (2) |
|
|
429 | (4) |
|
15.2.1 Grocery Price Data |
|
|
429 | (2) |
|
15.2.2 Supermarket Data and Competition Measures |
|
|
431 | (2) |
|
15.3 Assessing Price Dispersion in the French Retail Sector |
|
|
433 | (4) |
|
15.4 Disentangling the Sources of Price Dispersion |
|
|
437 | (8) |
|
|
445 | (1) |
|
|
446 | (2) |
|
|
448 | (3) |
Index |
|
451 | |