Preface |
|
xiii | |
Common Symbols |
|
xvii | |
|
I Introduction to Dynamics |
|
|
1 | (152) |
|
|
3 | (22) |
|
|
4 | (13) |
|
|
4 | (4) |
|
1.1.2 Interacting Particle Systems |
|
|
8 | (3) |
|
1.1.3 A Model of Segregation |
|
|
11 | (3) |
|
1.1.4 A Markov Perspective |
|
|
14 | (3) |
|
|
17 | (5) |
|
1.2.1 General State Space |
|
|
17 | (4) |
|
1.2.2 Forward-Looking Agents |
|
|
21 | (1) |
|
|
22 | (3) |
|
|
25 | (14) |
|
|
25 | (5) |
|
2.1.1 Iteration and Flow Control |
|
|
26 | (3) |
|
2.1.2 Application: Bisection |
|
|
29 | (1) |
|
|
30 | (9) |
|
2.2.1 User-Defined Functions |
|
|
30 | (4) |
|
2.2.2 Object-Oriented Programming |
|
|
34 | (3) |
|
2.2.3 High Performance Computing |
|
|
37 | (2) |
|
3 Analysis in Metric Space |
|
|
39 | (20) |
|
3.1 A First Look at Metric Space |
|
|
39 | (9) |
|
3.1.1 Distances and Norms |
|
|
40 | (2) |
|
|
42 | (3) |
|
3.1.3 Open Sets, Closed Sets |
|
|
45 | (3) |
|
|
48 | (10) |
|
|
48 | (3) |
|
|
51 | (1) |
|
3.2.3 Optimization, Equivalence |
|
|
52 | (3) |
|
|
55 | (3) |
|
|
58 | (1) |
|
4 Introduction to Dynamics |
|
|
59 | (40) |
|
4.1 Deterministic Dynamical Systems |
|
|
59 | (12) |
|
|
59 | (4) |
|
|
63 | (3) |
|
4.1.3 Chaotic Dynamic Systems |
|
|
66 | (2) |
|
4.1.4 Equivalent Dynamics and Linearization |
|
|
68 | (3) |
|
4.2 Finite State Markov Chains |
|
|
71 | (13) |
|
|
71 | (3) |
|
|
74 | (3) |
|
4.2.3 Marginal Distributions |
|
|
77 | (2) |
|
|
79 | (3) |
|
4.2.5 Constructing Joint Distributions |
|
|
82 | (2) |
|
4.3 Stability of Finite State MCs |
|
|
84 | (13) |
|
4.3.1 Stationary Distributions |
|
|
85 | (4) |
|
4.3.2 The Dobrushin Coefficient |
|
|
89 | (2) |
|
|
91 | (4) |
|
4.3.4 The Law of Large Numbers |
|
|
95 | (2) |
|
|
97 | (2) |
|
5 Further Topics for Finite MCs |
|
|
99 | (16) |
|
|
99 | (8) |
|
5.1.1 Outline of the Problem |
|
|
99 | (3) |
|
|
102 | (4) |
|
|
106 | (1) |
|
|
107 | (6) |
|
5.2.1 Application: Equilibrium Selection |
|
|
107 | (3) |
|
5.2.2 The Coupling Method |
|
|
110 | (3) |
|
|
113 | (2) |
|
|
115 | (38) |
|
|
115 | (16) |
|
6.1.1 Basic Models and Simulation |
|
|
115 | (5) |
|
6.1.2 Distribution Dynamics |
|
|
120 | (2) |
|
|
122 | (6) |
|
6.1.4 Stationary Densities: First Pass |
|
|
128 | (3) |
|
6.2 Optimal Savings, Infinite State |
|
|
131 | (9) |
|
|
131 | (2) |
|
6.2.2 Fitted Value Iteration |
|
|
133 | (5) |
|
|
138 | (2) |
|
6.3 Stochastic Speculative Price |
|
|
140 | (9) |
|
|
140 | (5) |
|
|
145 | (2) |
|
6.3.3 Equilibria and Optima |
|
|
147 | (2) |
|
|
149 | (4) |
|
|
153 | (162) |
|
|
155 | (30) |
|
|
155 | (12) |
|
|
155 | (4) |
|
|
159 | (3) |
|
7.1.3 General Measures and Probabilities |
|
|
162 | (2) |
|
7.1.4 Existence of Measures |
|
|
164 | (3) |
|
7.2 Definition of the Integral |
|
|
167 | (8) |
|
7.2.1 Integrating Simple Functions |
|
|
167 | (3) |
|
7.2.2 Measurable Functions |
|
|
170 | (3) |
|
7.2.3 Integrating Measurable Functions |
|
|
173 | (2) |
|
7.3 Properties of the Integral |
|
|
175 | (8) |
|
|
175 | (2) |
|
|
177 | (3) |
|
|
180 | (3) |
|
|
183 | (2) |
|
|
185 | (24) |
|
|
185 | (9) |
|
8.1.1 Stochastic Density Kernels |
|
|
186 | (1) |
|
8.1.2 Connection with SRSs |
|
|
187 | (6) |
|
8.1.3 The Markov Operator |
|
|
193 | (1) |
|
|
194 | (14) |
|
|
195 | (3) |
|
8.2.2 Dobrushin Revisited |
|
|
198 | (4) |
|
|
202 | (3) |
|
|
205 | (3) |
|
|
208 | (1) |
|
9 Measure-Theoretic Probability |
|
|
209 | (18) |
|
|
209 | (7) |
|
|
209 | (4) |
|
|
213 | (1) |
|
|
214 | (2) |
|
9.2 General State Markov Chains |
|
|
216 | (9) |
|
|
216 | (5) |
|
9.2.2 The Fundamental Recursion, Again |
|
|
221 | (2) |
|
|
223 | (2) |
|
|
225 | (2) |
|
10 Stochastic Dynamic Programming |
|
|
227 | (20) |
|
|
227 | (9) |
|
10.1.1 Statement of the Problem |
|
|
227 | (3) |
|
|
230 | (4) |
|
|
234 | (2) |
|
|
236 | (8) |
|
|
237 | (2) |
|
|
239 | (3) |
|
10.2.3 Fitted Value Iteration |
|
|
242 | (2) |
|
|
244 | (3) |
|
|
247 | (48) |
|
11.1 Notions of Convergence |
|
|
247 | (10) |
|
11.1.1 Convergence of Sample Paths |
|
|
247 | (5) |
|
11.1.2 Strong Convergence of Measures |
|
|
252 | (2) |
|
11.1.3 Weak Convergence of Measures |
|
|
254 | (3) |
|
11.2 Stability: Analytical Methods |
|
|
257 | (14) |
|
11.2.1 Stationary Distributions |
|
|
257 | (3) |
|
11.2.2 Testing for Existence |
|
|
260 | (3) |
|
11.2.3 The Dobrushin Coefficient, Measure Case |
|
|
263 | (3) |
|
11.2.4 Application: Credit-Constrained Growth |
|
|
266 | (5) |
|
11.3 Stability: Probabilistic Methods |
|
|
271 | (22) |
|
11.3.1 Coupling with Regeneration |
|
|
272 | (4) |
|
11.3.2 Coupling and the Dobrushin Coefficient |
|
|
276 | (3) |
|
11.3.3 Stability via Monotonicity |
|
|
279 | (4) |
|
11.3.4 More on Monotonicity |
|
|
283 | (4) |
|
11.3.5 Further Stability Theory |
|
|
287 | (6) |
|
|
293 | (2) |
|
12 More Stochastic Dynamic Programming |
|
|
295 | (20) |
|
12.1 Monotonicity and Concavity |
|
|
295 | (11) |
|
|
295 | (4) |
|
12.1.2 Concavity and Differentiability |
|
|
299 | (3) |
|
|
302 | (4) |
|
|
306 | (7) |
|
12.2.1 Weighted Supremum Norms |
|
|
306 | (2) |
|
12.2.2 Results and Applications |
|
|
308 | (3) |
|
|
311 | (2) |
|
|
313 | (2) |
|
|
315 | (42) |
|
|
317 | (1) |
|
|
317 | (10) |
|
|
317 | (3) |
|
|
320 | (4) |
|
|
324 | (3) |
|
|
327 | (12) |
|
|
327 | (4) |
|
A.2.2 Max, Min, Sup, and Inf |
|
|
331 | (3) |
|
A.2.3 Functions of a Real Variable |
|
|
334 | (5) |
|
|
339 | (1) |
|
|
339 | (3) |
|
|
342 | (2) |
|
|
344 | (1) |
|
|
345 | (2) |
|
B.5 Appendix to Chapter 10 |
|
|
347 | (2) |
|
B.6 Appendix to Chapter 11 |
|
|
349 | (1) |
|
B.7 Appendix to Chapter 12 |
|
|
350 | (7) |
Bibliography |
|
357 | (12) |
Index |
|
369 | |