Muutke küpsiste eelistusi

Effective Database Design for Geoscience Professionals [Kõva köide]

  • Formaat: Hardback, 263 pages, kõrgus x laius: 229x152 mm, kaal: 567 g
  • Ilmumisaeg: 01-Dec-2002
  • Kirjastus: PennWell Books
  • ISBN-10: 0878148280
  • ISBN-13: 9780878148288
Teised raamatud teemal:
  • Formaat: Hardback, 263 pages, kõrgus x laius: 229x152 mm, kaal: 567 g
  • Ilmumisaeg: 01-Dec-2002
  • Kirjastus: PennWell Books
  • ISBN-10: 0878148280
  • ISBN-13: 9780878148288
Teised raamatud teemal:
Geotechnical data management plays a key role in problem solving for oil company exploration and development operations. Managing geotechnical data usually takes a unique professional - one with both an engineering and IT background. Effective Database Design for Geoscience Professionals is a complete manual that geoscientists can use to provide a basic introduction to data management concepts. A highly organized work, each chapter is complete with an introductory synopsis and key terms where necessary. Overall, Hoffman provides practical information sprinkled with cautionary advice on avoiding potential database design pitfalls. Contents: Overview and Introduction; Key Terms and Concepts; Pre-Planing Database Projects; Data Types and Formats; Designing the Database; Geotechnical Data; Data Reformatting; Data Loading and Input; Data Normalization; Data Validation, Editing, and Quality Control; Designing the User Interface; Summary; Additional Resources; Appendix A: Checklist for Geological Data Types; Glossary of Key Terms.
List of Figures
xi
Acknowledgments xv
Dedication xvii
Overview and Introduction
1(6)
Objectives
2(1)
Conventions and Nomenclature
3(1)
Database Misconceptions
4(3)
Case History: Simple Databases
4(3)
Key Terms and Concepts
7(14)
Key Terms
7(5)
Database
8(1)
Database Management System
8(1)
Tables
9(1)
Records
10(1)
Fields
10(2)
Important Concepts
12(9)
Relational vs. Flat-File Databases
12(1)
Organization of Flat-File Databases
12(1)
Relational Database Concepts
13(8)
The Exploration-Development Data Life Cycle
21(26)
Overview of Exploration and Development Cycle Phases
22(1)
Reconnaissance Phase
23(8)
Reconnaissance Phase Data Types and Issues
27(4)
Exploration Drilling Phase
31(5)
Acquisition and Interpretation of Exploration Drilling Data
32(1)
Shift from Surface to Well-Centric Subsurface Data
33(1)
Geophysical Data Acquisition and Interpretation
34(1)
Backward Integration
35(1)
Forward Modeling
35(1)
Field Delineation Phase
36(2)
Impact on Data Management
36(1)
Shift to Production and Engineering Data
37(1)
Data Volume Impacts
37(1)
Development Phase
38(1)
Data Interpretation
38(1)
Exploitation Phase
39(2)
Hardware Requirements
40(1)
Software Considerations
40(1)
Abandonment and Remediation Phase
41(1)
Data Storage Considerations
42(1)
Special Cases: Acquisitions and Disposals
42(2)
Acquisitions
42(1)
Disposals
43(1)
Data Formats and Delivery Methods
43(1)
Summary
44(3)
Planning Database Projects
47(40)
Defining Project Objectives
48(1)
Defining Data Management Objectives
48(2)
Defining the Function of the Database
48(1)
Defining the User Interface
49(1)
Life Expectancy of the DBMS
49(1)
Defining Specific End-User Needs
50(5)
Case History: Scaled Application Development
50(1)
Involving the User in the Process
51(2)
Keeping the User in the Loop
53(1)
Continuous Improvement Processes
54(1)
Tailoring the Database to the Data
55(2)
Other Considerations
57(6)
Support
57(2)
Hardware Considerations
59(4)
The Database Management System (DBMS)
63(7)
Selection Criteria
64(1)
Technical Considerations
65(2)
Nontechnical Considerations
67(3)
General DBMS Types
70(2)
Database Applications
72(6)
Flexibility in Modification and Customization
73(1)
Ability to Link to Interpretive Applications
74(1)
Selecting a Data Model
75(1)
Case History: DBMS Selection and Customization
76(1)
Developing a Proprietary Data Model
77(1)
Selecting a Computing Platform
78(2)
Application-Driven Databases
79(1)
Application-Independent Databases
79(1)
Importance of Standardization
80(3)
Upgrade and Scalability Issues
80(2)
Accuracy Issues
82(1)
Data Transfer Issues
82(1)
Role of the Database Manager (DBM)
83(4)
Managers and Administrators
83(1)
General Roles and Responsibilities
84(1)
Integration and Coordination Functions
85(1)
User Communications Functions
86(1)
Data Types and Formats
87(16)
Introduction
87(2)
Scalability and Portability Considerations
88(1)
Modifications to Commercial Data Type Definitions
88(1)
Data Validation and Exceptions
89(2)
Use Validation Rules
89(1)
Duplication or Redundant Data
90(1)
Storing Derived Data
90(1)
Common Geotechnical Data Types and Formats
91(12)
Character-Based (Text) Data
91(5)
Numerical Data
96(1)
Date and Time Data
97(2)
Logical Data
99(1)
Binary Data
99(4)
Designing the Database
103(16)
Data Dictionaries
103(2)
Importance of Data Dictionaries
104(1)
Original vs. Derived Data
105(2)
What Data to Store
105(1)
What Data not To Store
106(1)
History Files and Deleted Records Files
107(1)
CASE Tools
108(1)
Definition and Application
109(1)
Use during Development
109(1)
Other Database Tools
109(1)
Customizing Commercial Products
110(3)
Data Model Extensions
112(1)
Generic Data Tables
113(6)
Geotechnical Data
119(40)
Introduction
119(1)
Coordinate Data
120(3)
Latitude and Longitude
120(2)
Universal Transverse Mercator Projection Method
122(1)
Meets and Bounds
123(1)
Other Coordinate Systems
123(1)
Directional Survey Data
123(8)
Observed vs. Computed Data
124(4)
Computed Data
128(1)
Computational Methods
129(2)
Depth-Related Data
131(1)
Stratigraphic Tops, Zones, and Markers
132(3)
Tops and Markers
132(1)
Zones and Layers
133(1)
Stratigraphic Exception Codes
133(1)
Stratigraphic Nomenclature
134(1)
Time-Related Data
135(3)
Geophysical Data
136(2)
Geological Age Data
138(1)
Log and Borehole Data
138(9)
General Organization of Log Data
139(1)
Log Data Storage and Transfer
140(4)
Data Editing Considerations
144(1)
Problems of Log Data Management
145(1)
Other Wireline Data
146(1)
Petrophysical Data
147(4)
Petrophysical Data from Cores
147(1)
Indirect (Computed) Petrophysical Data
148(1)
Derived Petrophysical Data
149(1)
Data Management Problems of Petrophysical Data
150(1)
Spatial Data and GIS Systems
151(1)
Geotechnical Data and GIS Applications
151(1)
Digital Document Storage
152(7)
Objectives of Digital Document Storage
153(6)
Data Reformatting
159(10)
Goals and Objectives of Data Reformatting
159(2)
Standardization Goals
160(1)
Application Integration Objectives
160(1)
Types of Reformatting Problems
161(3)
Simple Data Manipulation
161(1)
Complex Reformatting Problems
162(1)
Data Conversion with Reformatting
163(1)
Data Formatting Strategies
164(3)
When and When Not to Reformat
165(1)
Sorting vs. Indexing Data
166(1)
Examples of Reformatting Solutions
167(2)
Data Loading and Input
169(14)
Same-System Data Transfer
169(3)
Commercial Examples
170(2)
Inter-Database Data Transfer
172(3)
ODBC and SQLNet Links to Tables
172(1)
Exports to DBMS Format
173(1)
Export to Flat File (Text)
173(2)
Loading from Text Files
175(8)
Major Import Considerations
175(1)
Generalized Import Procedures and Solutions
176(7)
Data Normalization
183(6)
Definition and Importance
183(2)
Importance to Database Effectiveness
184(1)
Methods of Normalization
185(4)
Identifying Data Inconsistencies
185(1)
Search and Replace Strategies
186(1)
Automating the Process
187(2)
Data Validation, Editing, and Quality Control
189(16)
Definition and Importance
189(1)
Methods of Validation
190(3)
General Validation Methods
190(1)
Validation of Specific Data Types
190(1)
Formation Tops Problems
191(1)
Petrophysical Data Problems
192(1)
Directional Survey Data
193(1)
Use of Geostatistical Methods
193(3)
Histograms and Probability Distributions
194(1)
Log Data Normalization Procedures
195(1)
Regional Statistics
195(1)
Database Tools
196(1)
Validation Tools
196(1)
Functions and Tools
197(1)
Programmatic Solutions
197(1)
Data Editing
197(4)
Editing Methods and Options
197(1)
Data Editing Tracking and Audit
198(1)
Reporting Data Problems
198(3)
Data Quality Control
201(4)
Quality Control Methods
201(1)
Quality Assurance and Documentation
201(2)
Reviewing Data Validation Methods
203(2)
Designing the User Interface
205(20)
User Input and Feedback
205(3)
Planning the Interface
206(2)
User Critique and Feedback
208(1)
Interface Design Options
208(6)
Conventional (Menu-Based) Interface Design
208(3)
Object-Oriented (Form-Based) GUI Design
211(1)
GIS (Map-Based) Interfaces
212(2)
Validation Considerations
214(7)
Form-Based Validation
214(6)
Table-Based Validation
220(1)
Import and Export Considerations
220(1)
Programmatic Solutions
221(1)
Importance of User Involvement
221(1)
Customizing Commercial Interfaces
222(3)
Support and Maintenance
222(3)
Summary
225(4)
Standardization
225(2)
Project Standards
225(1)
Documentation Standards
226(1)
Database System Standards
226(1)
Data Format Standards
226(1)
Interface Standards
227(1)
User Input and Feedback
227(1)
User Surveys
227(1)
Special Advisory Groups
227(1)
Follow-Up Surveys
227(1)
Ongoing Communications
228(1)
Documentation
228(1)
Project Objectives
228(1)
Pre-Planning Documentation
228(1)
Database Design
228(1)
User's Operational Guide
228(1)
Appendix A Additional Resources 229(6)
Appendix B Checklist for Geological Data Types 235(6)
Glossary 241(12)
Index 253