Muutke küpsiste eelistusi

Electric Circuits 11th ed. [köitmata]

  • Formaat: Loose-leaf, 816 pages, kõrgus x laius x paksus: 279x218x38 mm, kaal: 1637 g
  • Ilmumisaeg: 15-Jan-2018
  • Kirjastus: Pearson
  • ISBN-10: 0134747178
  • ISBN-13: 9780134747170
Teised raamatud teemal:
  • köitmata
  • Hind: 235,25 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Loose-leaf, 816 pages, kõrgus x laius x paksus: 279x218x38 mm, kaal: 1637 g
  • Ilmumisaeg: 15-Jan-2018
  • Kirjastus: Pearson
  • ISBN-10: 0134747178
  • ISBN-13: 9780134747170
Teised raamatud teemal:

Note: You are purchasing the unbound Student Value Edition standalone product; Mastering Engineering does not come packaged with this content. Students, if interested in purchasing this title with Mastering Engineering, ask your instructor for the correct package ISBN and Course ID.

 

For courses in Introductory Circuit Analysis or Circuit Theory.  

 

Challenge students to develop the insights of a practicing engineer

The fundamental goals of the best-selling Electric Circuits, Student Value Edition, 11/e remain unchanged. The 11th Edition continues to motivate students to build new ideas based on concepts previously presented, to develop problem-solving skills that rely on a solid conceptual foundation, and to introduce realistic engineering experiences that challenge students to develop the insights of a practicing engineer. The 11th Edition represents the most extensive revision since the 5th Edition with every sentence, paragraph, subsection, and chapter examined and oftentimes rewritten to improve clarity, readability, and pedagogy–without sacrificing the breadth and depth of coverage that Electric Circuits is known for. Dr. Susan Riedel draws on her classroom experience to introduce the Analysis Methods feature, which gives students a step-by-step problem-solving approach.

List of Examples
xii
List of Tables
xvi
List of Analysis Methods
xvii
Preface xx
Chapter 1 Circuit Variables
2(24)
Practical Perspective: Balancing Power
3(1)
1.1 Electrical Engineering: An Overview
4(5)
1.2 The International System of Units
9(2)
1.3 Circuit Analysis: An Overview
11(1)
1.4 Voltage and Current
12(2)
1.5 The Ideal Basic Circuit Element
14(1)
1.6 Power and Energy
15(3)
Practical Perspective: Balancing Power
18(1)
Summary
19(1)
Problems
20(6)
Chapter 2 Circuit Elements
26(32)
Practical Perspective: Heating with Electric Radiators
27(1)
2.1 Voltage and Current Sources
28(4)
2.2 Electrical Resistance (Ohm's Law)
32(4)
2.3 Constructing a Circuit Model
36(3)
2.4 Kirchhoff's Laws
39(6)
2.5 Analyzing a Circuit Containing Dependent Sources
45(13)
Practical Perspective: Heating with Electric Radiators
48(2)
Summary
50(1)
Problems
50(8)
Chapter 3 Simple Resistive Circuits
58(34)
Practical Perspective: Resistive Touch Screens
59(1)
3.1 Resistors in Series
60(1)
3.2 Resistors in Parallel
61(3)
3.3 The Voltage-Divider and Current-Divider Circuits
64(4)
3.4 Voltage Division and Current Division
68(2)
3.5 Measuring Voltage and Current
70(3)
3.6 Measuring Resistance---The Wheatstone Bridge
73(2)
3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits
75(17)
Practical Perspective: Resistive Touch Screens
78(1)
Summary
79(1)
Problems
80(12)
Chapter 4 Techniques of Circuit Analysis
92(58)
Practical Perspective: Circuits with Realistic Resistors
93(1)
4.1 Terminology
94(2)
4.2 Introduction to the Node-Voltage Method
96(2)
4.3 The Node-Voltage Method and Dependent Sources
98(2)
4.4 The Node-Voltage Method: Some Special Cases
100(4)
4.5 Introduction to the Mesh-Current Method
104(3)
4.6 The Mesh-Current Method and Dependent Sources
107(1)
4.7 The Mesh-Current Method: Some Special Cases
108(4)
4.8 The Node-Voltage Method Versus the Mesh-Current Method
112(3)
4.9 Source Transformations
115(3)
4.10 Thevenin and Norton Equivalents
118(5)
4.11 More on Deriving the Thevenin Equivalent
123(3)
4.12 Maximum Power Transfer
126(3)
4.13 Superposition
129(21)
Practical Perspective: Circuits with Realistic Resistors
131(3)
Summary
134(2)
Problems
136(14)
Chapter 5 The Operational Amplifier
150(32)
Practical Perspective: Strain Gages
151(1)
5.1 Operational Amplifier Terminals
152(1)
5.2 Terminal Voltages and Currents
152(4)
5.3 The Inverting-Amplifier Circuit
156(2)
5.4 The Summing-Amplifier Circuit
158(2)
5.5 The Noninverting-Amplifier Circuit
160(2)
5.6 The Difference-Amplifier Circuit
162(5)
5.7 A More Realistic Model for the Operational Amplifier
167(15)
Practical Perspective: Strain Gages
171(1)
Summary
172(1)
Problems
173(9)
Chapter 6 Inductance, Capacitance, and Mutual Inductance
182(38)
Practical Perspective: Capacitive Touch Screens
183(1)
6.1 The Inductor
184(5)
6.2 The Capacitor
189(5)
6.3 Series-Parallel Combinations of Inductance and Capacitance
194(5)
6.4 Mutual Inductance
199(4)
6.5 A Closer Look at Mutual Inductance
203(17)
Practical Perspective: Capacitive Touch Screens
209(2)
Summary
211(1)
Problems
212(8)
Chapter 7 Response of First-Order RL and RC Circuits
220(52)
Practical Perspective: Artificial Pacemaker
221(1)
7.1 The Natural Response of an RL Circuit
222(6)
7.2 The Natural Response of an RC Circuit
228(5)
7.3 The Step Response of RL and RC Circuits
233(14)
7.4 A General Solution for Step and Natural Responses
247(1)
7.5 Sequential Switching
248(2)
7.6 Unbounded Response
250(2)
7.7 The Integrating Amplifier
252(20)
Practical Perspective: Artificial Pacemaker
255(1)
Summary
256(1)
Problems
256(16)
Chapter 8 Natural and Step Responses of RLC Circuits
272(46)
Practical Perspective: Clock for Computer Timing
273(1)
8.1 Introduction to the Natural Response of a Parallel RLC Circuit
274(4)
8.2 The Forms of the Natural Response of a Parallel RLC Circuit
278(11)
8.3 The Step Response of a Parallel RLC Circuit
289(7)
8.4 The Natural and Step Response of a Series RLC Circuit
296(7)
8.5 A Circuit with Two Integrating Amplifiers
303(15)
Practical Perspective: Clock for Computer Timing
308(1)
Summary
309(1)
Problems
310(8)
Chapter 9 Sinusoidal Steady-State Analysis
318(56)
Practical Perspective: A Household Distribution Circuit
319(1)
9.1 The Sinusoidal Source
320(3)
9.2 The Sinusoidal Response
323(1)
9.3 The Phasor
324(3)
9.4 The Passive Circuit Elements in the Frequency Domain
327(5)
9.5 Kirchhoff's Laws in the Frequency Domain
332(1)
9.6 Series, Parallel, and Delta-to-Wye Simplifications
333(7)
9.7 Source Transformations and Thevenin-Norton Equivalent Circuits
340(4)
9.8 The Node-Voltage Method
344(1)
9.9 The Mesh-Current Method
345(2)
9.10 The Transformer
347(10)
9.11 The Ideal Transformer
357(1)
9.12 Phasor Diagrams
357(17)
Practical Perspective: A Household Distribution Circuit
359(2)
Summary
361(1)
Problems
362(12)
Chapter 10 Sinusoidal Steady-State Power Calculations
374(38)
Practical Perspective: Vampire Power
375(1)
10.1 Instantaneous Power
376(1)
10.2 Average and Reactive Power
377(5)
10.3 The rms Value and Power Calculations
382(2)
10.4 Complex Power
384(2)
10.5 Power Calculations
386(7)
10.6 Maximum Power Transfer
393(19)
Practical Perspective: Vampire Power
399(2)
Summary
401(1)
Problems
401(11)
Chapter 11 Balanced Three-Phase Circuits
412(32)
Practical Perspective: Transmission and Distribution of Electric Power
413(1)
11.1 Balanced Three-Phase Voltages
414(1)
11.2 Three-Phase Voltage Sources
415(1)
11.3 Analysis of the Wye-Wye Circuit
416(6)
11.4 Analysis of the Wye-Delta Circuit
422(3)
11.5 Power Calculations in Balanced Three-Phase Circuits
425(5)
11.6 Measuring Average Power in Three-Phase Circuits
430(14)
Practical Perspective: Transmission and Distribution of Electric Power
433(2)
Summary
435(1)
Problems
436(8)
Chapter 12 Introduction to the Laplace Transform
444(38)
Practical Perspective: Transient Effects
445(1)
12.1 Definition of the Laplace Transform
446(1)
12.2 The Step Function
447(2)
12.3 The Impulse Function
449(3)
12.4 Functional Transforms
452(1)
12.5 Operational Transforms
453(5)
12.6 Applying the Laplace Transform
458(2)
12.7 Inverse Transforms
460(10)
12.8 Poles and Zeros of F(s)
470(2)
12.9 Initial-and Final-Value Theorems
472(10)
Practical Perspective: Transient Effects
474(2)
Summary
476(1)
Problems
477(5)
Chapter 13 The Laplace Transform in Circuit Analysis
482(54)
Practical Perspective: Surge Suppressors
483(1)
13.1 Circuit Elements in the s Domain
484(2)
13.2 Circuit Analysis in the s Domain
486(2)
13.3 Applications
488(12)
13.4 The Transfer Function
500(2)
13.5 The Transfer Function in Partial Fraction Expansions
502(3)
13.6 The Transfer Function and the Convolution Integral
505(6)
13.7 The Transfer Function and the Steady-State Sinusoidal Response
511(3)
13.8 The Impulse Function in Circuit Analysis
514(22)
Practical Perspective: Surge Suppressors
520(1)
Summary
521(1)
Problems
522(14)
Chapter 14 Introduction to Frequency Selective Circuits
536(36)
Practical Perspective: Pushbutton Telephone Circuits
537(1)
14.1 Some Preliminaries
538(1)
14.2 Low-Pass Filters
539(6)
14.3 High-Pass Filters
545(5)
14.4 Bandpass Filters
550(10)
14.5 Bandreject Filters
560(12)
Practical Perspective: Pushbutton Telephone Circuits
564(1)
Summary
564(1)
Problems
565(7)
Chapter 15 Active Filter Circuits
572(46)
Practical Perspective: Bass Volume Control
573(1)
15.1 First-Order Low-Pass and High-Pass Filters
574(3)
15.2 Scaling
577(3)
15.3 Op Amp Bandpass and Bandreject Filters
580(7)
15.4 Higher-Order Op Amp Filters
587(13)
15.5 Narrowband Bandpass and Bandreject Filters
600(18)
Practical Perspective: Bass Volume Control
605(3)
Summary
608(1)
Problems
609(9)
Chapter 16 Fourier Series
618(42)
Practical Perspective: Active High-Q Filters
619(2)
16.1 Fourier Series Analysis: An Overview
621(1)
16.2 The Fourier Coefficients
622(3)
16.3 The Effect of Symmetry on the Fourier Coefficients
625(6)
16.4 An Alternative Trigonometric Form of the Fourier Series
631(2)
16.5 An Application
633(6)
16.6 Average-Power Calculations with Periodic Functions
639(2)
16.7 The rms Value of a Periodic Function
641(1)
16.8 The Exponential Form of the Fourier Series
642(3)
16.9 Amplitude and Phase Spectra
645(15)
Practical Perspective: Active High-Q Filters
647(2)
Summary
649(1)
Problems
650(10)
Chapter 17 The Fourier Transform
660(32)
Practical Perspective: Filtering Digital Signals
661(1)
17.1 The Derivation of the Fourier Transform
662(2)
17.2 The Convergence of the Fourier Integral
664(2)
17.3 Using Laplace Transforms to Find Fourier Transforms
666(2)
17.4 Fourier Transforms in the Limit
668(3)
17.5 Some Mathematical Properties
671(1)
17.6 Operational Transforms
672(5)
17.7 Circuit Applications
677(2)
17.8 Parseval's Theorem
679(13)
Practical Perspective: Filtering Digital Signals
685(1)
Summary
686(1)
Problems
686(6)
Chapter 18 Two-Port Circuits
692(26)
Practical Perspective: Characterizing f an Unknown Circuit
693(1)
18.1 The Terminal Equations
694(1)
18.2 The Two-Port Parameters
695(8)
18.3 Analysis of the Terminated Two-Port Circuit
703(5)
18.4 Interconnected Two-Port Circuits
708(10)
Practical Perspective: Characterizing an Unknown Circuit
711(1)
Summary
712(1)
Problems
713(5)
Appendix A The Solution of Linear Simultaneous Equations
718(9)
A.1 Preliminary Steps
718(1)
A.2 Calculator and Computer Methods
719(2)
A.3 Paper-and-Pencil Methods
721(2)
A.4 Applications
723(4)
Appendix B Complex Numbers
727(6)
B.1 Notation
727(1)
B.2 The Graphical Representation of a Complex Number
728(1)
B.3 Arithmetic Operations
729(1)
B.4 Useful Identities
730(1)
B.5 The Integer Power of a Complex Number
731(1)
B.6 The Roots of a Complex Number
731(2)
Appendix C More on Magnetically Coupled Coils and Ideal Transformers
733(8)
C.1 Equivalent Circuits for Magnetically Coupled Coils
733(4)
C.2 The Need for Ideal Transformers in the Equivalent Circuits
737(4)
Appendix D The Decibel
741(2)
Appendix E Bode Diagrams
743(14)
E.1 Real, First-Order Poles and Zeros
743(1)
E.2 Straight-Line Amplitude Plots
744(3)
E.3 More Accurate Amplitude Plots
747(1)
E.4 Straight-Line Phase Angle Plots
748(2)
E.5 Bode Diagrams: Complex Poles and Zeros
750(1)
E.6 Straight-Line Amplitude Plots for Complex Poles
751(1)
E.7 Correcting Straight-Line Amplitude Plots for Complex Poles
752(2)
E.8 Phase Angle Plots for Complex Poles
754(3)
Appendix F An Abbreviated Table of Trigonometric Identities
757(1)
Appendix G An Abbreviated Table of Integrals
758(2)
Appendix H Common Standard Component Values
760(1)
Answers to Selected Problems 761(10)
Index 771