Section I Section: Introduction |
|
|
Chapter 1 Electrical Impedance Tomography |
|
|
3 | (10) |
|
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3 EIT Image Generation and Interpretation |
|
|
5 | (6) |
|
1.3.1 Tissue Electrical Properties |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.3 Models of Sensitivity |
|
|
8 | (1) |
|
1.3.4 EIT Image Reconstruction |
|
|
9 | (1) |
|
1.3.5 Image Interpretation |
|
|
10 | (1) |
|
1.4 EIT Applications and Perspectives |
|
|
11 | (2) |
|
Chapter 2 Introduction to EIT Concepts and Technology |
|
|
13 | (20) |
|
|
2.1 Biomedical Electrical Impedance Tomography |
|
|
13 | (1) |
|
2.2 Brief Introduction to Bioimpedance |
|
|
14 | (6) |
|
2.2.1 Resistance and Capacitance |
|
|
14 | (2) |
|
2.2.2 Impedance in Biological Tissue |
|
|
16 | (2) |
|
2.2.3 Other Related Measures of Impedance |
|
|
18 | (1) |
|
2.2.4 Impedance Measurement |
|
|
19 | (1) |
|
2.2.5 Relevance to Electrical Impedance Tomography |
|
|
20 | (1) |
|
2.3 Introduction to Biomedical EIT |
|
|
20 | (14) |
|
2.3.1 Historical Perspective |
|
|
20 | (1) |
|
2.3.2 EIT Instrumentation |
|
|
21 | (1) |
|
2.3.2.1 Individual Impedance Measurements |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (1) |
|
2.3.4 Setting Up and Calibrating Measurements |
|
|
24 | (1) |
|
2.3.5 Data Collection Strategies |
|
|
25 | (1) |
|
2.3.6 EIT Image Reconstruction |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.3.6.2 Sensitivity Matrix Approaches |
|
|
26 | (1) |
|
2.3.6.3 Other Developments in Algorithms |
|
|
28 | (1) |
|
2.3.7 Current Developments |
|
|
29 | (4) |
Section II EIT: Tissue Properties to Image Measures/Chapter |
|
|
Chapter 3 Electromagnetic Properties of Tissues |
|
|
33 | (20) |
|
|
|
3.1 What Underlies Tissue Electromagnetic Properties? |
|
|
34 | (7) |
|
3.1.1 Ionic Conductivities |
|
|
34 | (2) |
|
3.1.2 Membranes and Solid Tissues |
|
|
36 | (1) |
|
3.1.3 Relaxation Models of Tissue Properties |
|
|
37 | (4) |
|
3.2 Overall Tissue Conductivities |
|
|
41 | (5) |
|
3.2.1 Properties of Fluids, Cell Suspensions and Blood |
|
|
42 | (1) |
|
3.2.1.1 Cerebrospinal Fluid |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
3.2.5.1 Properties of Tumor Tissues |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
3.2.6 Active Membrane Properties |
|
|
46 | (1) |
|
3.3 Measurement of Impedance Properties |
|
|
46 | (3) |
|
3.3.1 Electrode Properties |
|
|
47 | (1) |
|
3.3.2 Conductivity Cell and Dependence on Geometry |
|
|
48 | (1) |
|
3.3.3 High Frequency (>50 MHz) Properties |
|
|
48 | (1) |
|
|
49 | (2) |
|
3.5 Electrical Safety and Current Limitations |
|
|
51 | (1) |
|
3.6 Conclusions and Perspective |
|
|
52 | (1) |
|
Chapter 4 Electronics and Hardware |
|
|
53 | (26) |
|
|
4.1 Hardware Challenges and Approaches |
|
|
53 | (4) |
|
4.1.1 Speed and Precision |
|
|
54 | (1) |
|
4.1.2 Applied Currents vs. Voltages |
|
|
55 | (1) |
|
4.1.3 Pair-Drive vs. Parallel-Drive Systems |
|
|
55 | (1) |
|
4.1.4 Voltage Measurement on Current-Carrying Electrodes |
|
|
56 | (1) |
|
|
57 | (16) |
|
|
58 | (1) |
|
4.2.1.1 Floating and Single-Ended Current Sources |
|
|
59 | (1) |
|
4.2.1.2 Current Source Requirements |
|
|
60 | (1) |
|
4.2.1.3 Stray Capacitance |
|
|
61 | (1) |
|
4.2.1.4 Current Source Compensation |
|
|
63 | (1) |
|
4.2.1.5 Current Source and Compensation Circuits |
|
|
63 | (1) |
|
4.2.1.6 Capacitance Mitigation Circuits |
|
|
67 | (1) |
|
|
68 | (1) |
|
4.2.3 Connecting to Electrodes |
|
|
69 | (1) |
|
|
70 | (1) |
|
4.2.3.2 Active Electrodes |
|
|
71 | (1) |
|
4.2.4 Multiplexers vs. Parallel Hardware |
|
|
72 | (1) |
|
|
73 | (3) |
|
|
73 | (1) |
|
|
74 | (1) |
|
4.3.2 Differential vs. Single-Ended Voltage Measurement |
|
|
74 | (2) |
|
4.3.3 Common-mode Voltage Feedback |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
Chapter 5 The EIT Forward Problem |
|
|
79 | (30) |
|
|
|
|
79 | (1) |
|
|
80 | (3) |
|
5.2.1 Quasi-static Approximation |
|
|
81 | (2) |
|
5.3 Current Propagation in Conductive Bodies |
|
|
83 | (5) |
|
5.3.1 Analytical Solutions |
|
|
85 | (1) |
|
5.3.2 Circular Anomaly in a Unit Disk |
|
|
86 | (1) |
|
|
87 | (1) |
|
5.4 Measurements and Electrodes |
|
|
88 | (3) |
|
|
91 | (4) |
|
|
92 | (1) |
|
5.5.2 Adjacent Measurement Protocol |
|
|
93 | (1) |
|
5.5.3 Optimal Drive Patterns |
|
|
93 | (2) |
|
|
95 | (3) |
|
5.6.1 Standard Formula for the Jacobian |
|
|
96 | (2) |
|
5.7 Solving the Forward Problem: The Finite Element Method |
|
|
98 | (8) |
|
5.7.1 Basic FEM Formulation |
|
|
99 | (3) |
|
5.7.2 Solving the Linear System |
|
|
102 | (1) |
|
5.7.3 Conjugate Gradient and Krylov Subspace Methods |
|
|
103 | (1) |
|
|
104 | (2) |
|
5.8 Further Comments on the Forward Model |
|
|
106 | (3) |
|
Chapter 6 The EIT Inverse Problem |
|
|
109 | (28) |
|
|
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
6.4 Regularizing Linear Ill-posed Problems |
|
|
113 | (6) |
|
|
113 | (1) |
|
6.4.2 Tikhonov Regularization |
|
|
114 | (1) |
|
6.4.3 The Singular Value Decomposition |
|
|
115 | (1) |
|
6.4.4 Studying Ill-conditioning with the SVD |
|
|
116 | (2) |
|
6.4.5 More General Regularization |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (6) |
|
6.6.1 Linearized EIT Reconstruction |
|
|
121 | (1) |
|
6.6.2 Selection of Hyperparameter, α |
|
|
121 | (1) |
|
6.6.3 Regularization Parameters |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
124 | (2) |
|
|
126 | (2) |
|
6.7.1 Iterative Nonlinear Solution |
|
|
127 | (1) |
|
6.8 Total Variation Regularization |
|
|
128 | (2) |
|
6.9 Common Pitfalls and Best Practice |
|
|
130 | (2) |
|
6.10 Further Developments in Reconstruction Algorithms |
|
|
132 | (2) |
|
6.10.1 Beyond Tikhonov regularization |
|
|
133 | (1) |
|
6.10.2 Direct Non-linear Methods |
|
|
133 | (1) |
|
6.11 Machine Learning and Inverse Problems |
|
|
134 | (1) |
|
6.12 Practical Applications |
|
|
135 | (2) |
|
Chapter 7 D-bar Methods for EIT |
|
|
137 | (14) |
|
|
|
|
|
137 | (1) |
|
|
138 | (3) |
|
7.3 The Rise of the CGO Solutions |
|
|
141 | (1) |
|
|
141 | (6) |
|
7.4.1 Equations of the D-bar Method |
|
|
142 | (1) |
|
7.4.2 Numerical Solution of the Equations |
|
|
143 | (1) |
|
7.4.2.1 Computing the DN Map from Measured Data |
|
|
143 | (1) |
|
7.4.2.2 Computation of the Scattering Transform |
|
|
144 | (1) |
|
7.4.2.3 Numerical Solution of the D-bar Equation |
|
|
145 | (1) |
|
7.4.3 Examples of Reconstructions |
|
|
146 | (1) |
|
7.5 New and Recent Directions in D-bar Methods |
|
|
147 | (4) |
|
Chapter 8 EIT Image Interpretation |
|
|
151 | (26) |
|
|
|
|
8.1 Elements of EIT Images |
|
|
152 | (4) |
|
8.1.1 Valid Size of an Image |
|
|
152 | (1) |
|
8.1.2 Colour Mapping and Colour Scale |
|
|
152 | (1) |
|
8.1.3 Sampling Frequency and Mixture of Signals |
|
|
153 | (2) |
|
8.1.4 Meaning of the Pixels in Different Types of Images |
|
|
155 | (1) |
|
8.2 Functional Images and EIT Measures |
|
|
156 | (13) |
|
8.2.1 Simple Distribution of the Impedance Changes in Certain ROIs |
|
|
157 | (1) |
|
8.2.1.1 Example: Averaging Tidal Variation fEIT |
|
|
157 | (1) |
|
8.2.1.2 Example: Regression fEIT |
|
|
157 | (1) |
|
8.2.1.3 Example: Cardiac-related fEIT |
|
|
158 | (1) |
|
8.2.1.4 Example: Identifying and Tracking of Intracranial Resistivity Changes |
|
|
159 | (1) |
|
8.2.2 Differences of Impedance Variation Calculated in Spatial Correlations |
|
|
160 | (1) |
|
8.2.2.1 Example: Center of Ventilation (CoV) |
|
|
161 | (1) |
|
8.2.2.2 Example: The Global Inhomogeneity Index (GI) |
|
|
161 | (1) |
|
8.2.2.3 Example: Spatial Related Classification of Intracranial Resistivity Changes |
|
|
162 | (1) |
|
8.2.3 Subtracting Temporal Information (Taking Advantages of the High Sampling Rate) |
|
|
163 | (1) |
|
8.2.3.1 Example: Intra-tidal Volume Distribution (ITVD) |
|
|
163 | (1) |
|
8.2.3.2 Example: Regional Ventilation Delay RVD, both fEIT and Index Available |
|
|
164 | (1) |
|
8.2.4 New Units or Dimensions Deriving from Impedance |
|
|
165 | (1) |
|
8.2.4.1 Example: Regional Compliance as an fEIT and the Application in PEEP Titration |
|
|
165 | (1) |
|
8.2.4.2 Example: Regional Findings for Pulmonary Function Test |
|
|
167 | (1) |
|
8.2.4.3 Example: Determining Impedance Measures Using Contrast Agents |
|
|
168 | (1) |
|
8.2.4.4 Example: The Linear Correlation Metric Images for Frequency Difference EIT |
|
|
168 | (1) |
|
8.3 Clinical Applications |
|
|
169 | (5) |
|
8.3.1 Using Existing fEIT and Measures |
|
|
169 | (1) |
|
8.3.2 Recommendations for Development of fEIT Images and Measures |
|
|
170 | (4) |
|
8.4 List of fEIT Image and Measures |
|
|
174 | (3) |
Section III Applications |
|
|
Chapter 9 EIT for Measurement of Lung Function |
|
|
177 | (14) |
|
|
|
177 | (2) |
|
9.1.1 Basics of Lung Physiology and Pathophysiology |
|
|
177 | (1) |
|
9.1.2 Lung-related Applications of EIT |
|
|
178 | (1) |
|
9.2 EIT Examinations During Spontaneous Quiet Tidal Breathing |
|
|
179 | (4) |
|
9.2.1 Analysis of EIT Data Acquired During Spontaneous Quiet Tidal Breathing |
|
|
180 | (2) |
|
9.2.2 Findings of EIT Studies Performed in Human Subjects During Quiet Tidal Breathing |
|
|
182 | (1) |
|
9.3 EIT Examinations During Ventilation Manoeuvres and Pulmonary Function Testing |
|
|
183 | (5) |
|
9.3.1 Analysis of EIT Data Acquired During Ventilation Manoeuvres and Pulmonary Function Testing |
|
|
184 | (3) |
|
9.3.2 Findings of EIT Studies Performed in Human Subjects During Ventilation Manoeuvres and Pulmonary Function Testing |
|
|
187 | (1) |
|
|
188 | (3) |
|
Chapter 10 EIT for Monitoring of Ventilation |
|
|
191 | (16) |
|
|
|
191 | (1) |
|
10.2 Assessment of Ventilation Distribution with EIT |
|
|
192 | (2) |
|
10.3 Measures of Ventilation Inhomogeneity |
|
|
194 | (1) |
|
10.4 Intratidal Ventilation Inhomogeneity and Alveolar Cycling |
|
|
194 | (1) |
|
10.5 Identification of Overdistension and Alveolar Collapse at the Bedside Using Regional Compliance Estimation |
|
|
195 | (3) |
|
10.6 Identification of Poorly Ventilated Lung Areas |
|
|
198 | (1) |
|
10.7 End-expiratory Lung Impedance Changes for Quantification of Lung Recruitment and Derecruitment |
|
|
199 | (1) |
|
10.8 Expiratory Time Constants for Monitoring Airflow Limitation |
|
|
200 | (1) |
|
10.9 Comparison of Different Approaches for Optimizing Mechanical Ventilation with EIT |
|
|
201 | (4) |
|
10.9.1 Gravity-dependent Ventilation Distribution |
|
|
201 | (1) |
|
10.9.2 Global Inhomogeneity Index and Coefficient of Variation |
|
|
202 | (1) |
|
10.9.3 Intratidal Ventilation Inhomogeneity |
|
|
202 | (1) |
|
10.9.4 Quantification of Alveolar Overdistension and Collapse During a Decremental PEEP Trial ("Costa-Approach") |
|
|
202 | (1) |
|
10.9.5 Assessment of Changes in Regional Compliance with Different VT or PEEP Level |
|
|
203 | (1) |
|
10.9.6 Poorly Ventilated Lung Areas ("Silent Spaces") |
|
|
204 | (1) |
|
10.9.7 Analyzing Changes in End-expiratory Lung Impedance |
|
|
204 | (1) |
|
10.9.8 Regional Expiratory Time Constants |
|
|
205 | (1) |
|
|
205 | (2) |
|
Chapter 11 EIT Monitoring of Hemodynamics |
|
|
207 | (24) |
|
|
|
|
|
|
|
208 | (1) |
|
11.2 Classical Methods and Key Parameters of Hemodynamic Measurements |
|
|
209 | (4) |
|
11.2.1 Intra-Vascular Pressure Measurement |
|
|
209 | (1) |
|
11.2.1.1 Systemic Arterial Pressure |
|
|
209 | (1) |
|
11.2.1.2 Pulmonary Arterial Pressure |
|
|
209 | (1) |
|
11.2.1.3 Systemic Venous Pressure |
|
|
210 | (1) |
|
11.2.1.4 Pulmonary Venous Pressure |
|
|
210 | (1) |
|
|
211 | (1) |
|
11.2.3 Volume Status Parameters |
|
|
211 | (1) |
|
11.2.3.1 Stroke Volume Variation |
|
|
211 | (1) |
|
11.2.3.2 Extravascular Lung Water |
|
|
212 | (1) |
|
11.3 Origins of Cardiosynchronous Signals in EIT Measurements |
|
|
213 | (1) |
|
11.4 Interfering Signals in Hemodynamic EIT Measurements |
|
|
214 | (5) |
|
11.4.1 Blood Flow and Blood Volume Changes |
|
|
215 | (1) |
|
|
215 | (1) |
|
11.4.2.1 Regions of Interest |
|
|
216 | (1) |
|
|
216 | (1) |
|
11.4.2.3 Decomposition of Signals |
|
|
217 | (1) |
|
11.4.2.4 Apnea Measurements |
|
|
218 | (1) |
|
|
218 | (1) |
|
11.5 EIT Measurements for Hemodynamics |
|
|
219 | (10) |
|
11.5.1 Intra-Arterial Pressure Measurement by Pulse Transit Time |
|
|
220 | (1) |
|
11.5.1.1 Determining Pulse Arrival Times with EIT |
|
|
220 | (1) |
|
11.5.1.2 Aortic Blood Pressure |
|
|
221 | (1) |
|
11.5.1.3 Pulmonary Artery Pressure |
|
|
222 | (1) |
|
|
222 | (1) |
|
11.5.2.1 Pulmonary Perfusion |
|
|
222 | (1) |
|
11.5.2.2 Regional V/Q Matching |
|
|
223 | (1) |
|
11.5.2.3 Cardiac Output and Stroke Volume |
|
|
224 | (1) |
|
|
225 | (1) |
|
11.5.3.1 Stroke Volume Variation and Heart-Lung-Interaction |
|
|
225 | (1) |
|
11.5.3.2 Detection of Aortic ROI |
|
|
227 | (1) |
|
11.5.3.3 Extravascular Lung Water |
|
|
228 | (1) |
|
|
229 | (2) |
|
Chapter 12 EIT Imaging of Brain and Nerves |
|
|
231 | (30) |
|
|
|
232 | (2) |
|
12.2 Physiological Basis of EIT of Brain Function |
|
|
234 | (6) |
|
12.2.1 Bioimpedance of Brain and Nerve and Changes During Activity or Pathological Conditions |
|
|
234 | (1) |
|
12.2.1.1 Impedance of Resting Brain |
|
|
234 | (1) |
|
12.2.1.2 Anoxic Depolarization and Cerebral Ischemia |
|
|
235 | (1) |
|
12.2.1.3 Slow Impedance Changes During Functional Activity |
|
|
237 | (1) |
|
12.2.1.4 Functional Activity with the Time Course of the Action Potential |
|
|
238 | (1) |
|
12.2.2 Other Mechanisms of Impedance Change: Temperature and CSF Movements |
|
|
239 | (1) |
|
12.2.3 Effect of Coverings of the Brain When Recording EIT with Scalp Electrodes |
|
|
239 | (1) |
|
12.3 EIT Systems Developed for Brain Imaging |
|
|
240 | (9) |
|
|
240 | (1) |
|
12.3.1.1 Relevant Instrumentation Principles |
|
|
240 | (1) |
|
12.3.1.2 EIT Systems Developed in the UCL Group |
|
|
243 | (2) |
|
12.3.2 Reconstruction Algorithms for EIT of Brain Function |
|
|
245 | (1) |
|
12.3.2.1 Reconstruction Algorithms for Time Difference EIT Imaging Based on a Linear Assumption |
|
|
245 | (1) |
|
12.3.2.2 Non-linear Reconstruction Algorithms for EIT of Brain Function |
|
|
247 | (1) |
|
12.3.3 Development of Tanks for Testing of EIT Systems |
|
|
248 | (1) |
|
12.4 EIT of Slow Impedance Changes in the Brain Related to Changes in Blood Volume and Cell Swelling |
|
|
249 | (6) |
|
12.4.1 During Physiological Evoked Activity |
|
|
249 | (2) |
|
12.4.2 EIT of Slow Changes During Epileptic Seizures |
|
|
251 | (1) |
|
12.4.2.1 Proof of Concept in Animal Studies |
|
|
251 | (1) |
|
|
254 | (1) |
|
12.5 EIT in Cerebral Pathology Over Hours or Days |
|
|
255 | (2) |
|
12.5.1 Time Difference Cerebral EIT Over Hours or Days |
|
|
255 | (1) |
|
12.5.2 Multifrequency EIT in Acute Stroke |
|
|
256 | (1) |
|
12.6 EIT of Neuronal Depolarization |
|
|
257 | (3) |
|
12.6.1 Fast Neural in the Brain During Evoked Physiological Activity and Epileptic Seizures |
|
|
258 | (1) |
|
12.6.2 Fast Neural EIT in Peripheral Nerve |
|
|
259 | (1) |
|
|
260 | (1) |
|
Chapter 13 EIT for Imaging of Cancer |
|
|
261 | (28) |
|
|
|
263 | (2) |
|
13.1.1 Cancer Biology and Impedance Contrast Mechanism |
|
|
263 | (1) |
|
13.1.2 Anatomy-specific Impedance Contrast |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (15) |
|
|
265 | (1) |
|
13.2.2 Other Methods in Use for Breast Cancer Detection |
|
|
266 | (1) |
|
13.2.3 Different Approaches to Breast EIT |
|
|
267 | (1) |
|
|
267 | (1) |
|
13.2.5 Tomographic Imaging |
|
|
268 | (1) |
|
13.2.6 Limitations of Impedance Measurements |
|
|
268 | (1) |
|
13.2.7 Advantages of Impedance as a Screening Tool |
|
|
268 | (1) |
|
13.2.8 Clinical Results Summaries |
|
|
269 | (1) |
|
13.2.9 Planar Geometry Systems |
|
|
269 | (1) |
|
13.2.9.1 Piperno 1990[ 830] |
|
|
269 | (1) |
|
13.2.9.2 Malich 2000[ 675] |
|
|
269 | (1) |
|
13.2.9.3 Cherepenin 2001[ 194] |
|
|
270 | (1) |
|
13.2.9.4 Malich 2001a[ 674] |
|
|
270 | (1) |
|
13.2.9.5 Malich 2001b[ 673] |
|
|
270 | (1) |
|
13.2.9.6 Cherepin 2002[ 196] |
|
|
271 | (1) |
|
13.2.9.7 Glickman 2002[ 351] |
|
|
271 | (1) |
|
13.2.9.8 Martin 2002[ 688] |
|
|
272 | (1) |
|
13.2.9.9 Stojadinovic 2005[ 1007] |
|
|
272 | (1) |
|
13.2.9.10 Stojadinovic 2006[ 1006] |
|
|
272 | (1) |
|
13.2.9.11 Trokhanova 2008[ 1055] |
|
|
273 | (1) |
|
13.2.9.12 Raneta 2013[ 862] |
|
|
273 | (1) |
|
13.2.10 Circular Geometry Systems |
|
|
273 | (1) |
|
13.2.10.1 Osterman 2000[ 796] |
|
|
273 | (1) |
|
13.2.10.2 Halter 2004, 2008c [ 405,406] |
|
|
274 | (1) |
|
13.2.10.3 Soni 2004[ 997] |
|
|
275 | (1) |
|
13.2.10.4 Poplack 2004[ 839] |
|
|
276 | (1) |
|
13.2.10.5 Poplack 2007[ 840] |
|
|
276 | (1) |
|
13.2.10.6 Halter 2008c[ 406] |
|
|
277 | (1) |
|
13.2.10.7 Halter 2015[ 408] |
|
|
277 | (1) |
|
13.2.10.8 Discussion of the Clinical Trials |
|
|
278 | (2) |
|
|
280 | (9) |
|
|
280 | (1) |
|
13.3.2 Transrectal EIT for Cancer Detection and Biopsy Guidance |
|
|
281 | (3) |
|
13.3.3 Surgical Margin Assessment Using Endoscopic Electrode Arrays |
|
|
284 | (2) |
|
|
286 | (1) |
|
13.5 Perspective on Cancer Imaging with EIT |
|
|
286 | (3) |
|
Chapter 14 Other Clinical Applications of EIT |
|
|
289 | (6) |
|
|
|
14.1 Tumour Ablation Monitoring |
|
|
289 | (2) |
|
14.2 System-on-chip and Cell/tissue Imaging |
|
|
291 | (1) |
|
|
292 | (1) |
|
14.4 Intra-Pelvic Venous Congestion |
|
|
293 | (1) |
|
14.5 Other Potential Applications |
|
|
293 | (2) |
|
Chapter 15 Veterinary Applications of EIT |
|
|
295 | (14) |
|
|
|
15.1 Introduction to Thoracic EIT in Veterinary Applications |
|
|
295 | (1) |
|
15.1.1 Creation of Finite Element Models for Animals |
|
|
295 | (1) |
|
15.2 Translational Research in Animals |
|
|
296 | (2) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
15.3 Clinical Research in Animals |
|
|
298 | (6) |
|
|
298 | (4) |
|
|
302 | (1) |
|
|
303 | (1) |
|
15.4 Clinical Applications in Animals |
|
|
304 | (1) |
|
15.5 Future of EIT in Veterinary Applications |
|
|
305 | (4) |
Section IV Related Technologies |
|
|
Chapter 16 Magnetic Induction Tomography |
|
|
309 | (30) |
|
|
|
|
309 | (1) |
|
|
310 | (1) |
|
|
311 | (5) |
|
16.3.1 Excitors and Sensors |
|
|
311 | (1) |
|
16.3.2 Array Configuration |
|
|
312 | (2) |
|
|
314 | (1) |
|
16.3.4 Cancellation of the Primary Signal |
|
|
314 | (2) |
|
|
316 | (1) |
|
16.5 Working Imaging Systems and Proposed Applications |
|
|
317 | (8) |
|
16.5.1 MIT for the Process Industry |
|
|
317 | (1) |
|
16.5.2 Security Applications |
|
|
318 | (1) |
|
16.5.3 Petrochemical Industry |
|
|
319 | (1) |
|
|
320 | (5) |
|
16.6 Image Reconstruction |
|
|
325 | (2) |
|
16.7 Spatial Resolution, Conductivity Resolution and Noise |
|
|
327 | (2) |
|
|
329 | (1) |
|
16.9 Scaling the Size of an MIT Array |
|
|
329 | (4) |
|
16.10 Multifrequency Measurements: Magnetic Induction Spectroscopy |
|
|
333 | (2) |
|
16.11 Imaging Permittivity and Permeability |
|
|
335 | (1) |
|
|
336 | (3) |
|
Chapter 17 Electrical Impedance Imaging Using MRI |
|
|
339 | (44) |
|
|
|
|
340 | (2) |
|
17.2 Conductivity, Permittivity, and Maxwell's Equations |
|
|
342 | (1) |
|
17.3 Magnetic Resonance Electrical Impedance Tomography (MREIT) |
|
|
343 | (10) |
|
17.3.1 Governing Equations in MREIT |
|
|
343 | (1) |
|
17.3.2 Measurement Techniques in MREIT |
|
|
344 | (2) |
|
17.3.3 Image Reconstruction Algorithms in MREIT |
|
|
346 | (1) |
|
17.3.3.1 Harmonic Bz Algorithm |
|
|
346 | (1) |
|
17.3.3.2 Projected Current Density Algorithm |
|
|
348 | (1) |
|
17.3.3.3 Direct Harmonic Bz Algorithm |
|
|
349 | (1) |
|
17.3.4 Clinical Applications of MREIT |
|
|
350 | (1) |
|
17.3.4.1 MREIT for Transcranial Direct Current Stimulation (tDCS) |
|
|
351 | (1) |
|
17.3.4.2 MREIT for Deep Brain Stimulation (DBS) |
|
|
352 | (1) |
|
17.3.5 Future Work in MREIT |
|
|
352 | (1) |
|
17.4 Magnetic Resonance Electrical Properties Tomography (MREPT) |
|
|
353 | (7) |
|
17.4.1 Governing Equation in MREPT |
|
|
354 | (1) |
|
17.4.2 Measurement Techniques in MREPT |
|
|
355 | (1) |
|
17.4.3 Image Reconstruction Algorithms in MREPT |
|
|
356 | (1) |
|
17.4.4 Clinical Applications of MREPT |
|
|
357 | (1) |
|
17.4.4.1 Imaging of Conductivity Changes Caused by Radiation Therapy (RT) |
|
|
357 | (1) |
|
17.4.4.2 Conductivity Imaging of Ischemic Stroke |
|
|
357 | (1) |
|
17.4.4.3 Conductivity Imaging of Lower Extremity |
|
|
358 | (1) |
|
17.4.5 Future Work in MREPT |
|
|
359 | (1) |
|
17.5 Frequency Dependence and Direction Dependence of Conductivity |
|
|
360 | (4) |
|
17.5.1 Frequency Dependence of Conductivity |
|
|
360 | (1) |
|
17.5.2 Direction Dependence of Conductivity |
|
|
361 | (1) |
|
17.5.3 Conductivity Tensor and Water Diffusion Tensor |
|
|
362 | (2) |
|
17.6 Diffusion Tensor Magnetic Resonance Electrical Impedance Tomography (DT-MREIT) |
|
|
364 | (4) |
|
17.6.1 Governing Equations in DT-MREIT |
|
|
364 | (1) |
|
17.6.2 Measurement Techniques in DT-MREIT |
|
|
365 | (1) |
|
17.6.3 Image Reconstruction Algorithms in DT-MREIT |
|
|
366 | (1) |
|
17.6.4 DT-MREIT Imaging Experiments |
|
|
367 | (1) |
|
17.7 Conductivity Tensor Imaging (CTI) |
|
|
368 | (13) |
|
17.7.1 Governing Equations of CTI |
|
|
369 | (1) |
|
17.7.2 Measurement Techniques |
|
|
369 | (2) |
|
17.7.3 Image Reconstruction Algorithms in CTI |
|
|
371 | (1) |
|
17.7.3.1 Extraction of dwe, dwi and α |
|
|
371 | (1) |
|
17.7.3.2 Estimation of Dwe |
|
|
373 | (1) |
|
|
374 | (1) |
|
17.7.4 CTI Imaging Experiments |
|
|
375 | (1) |
|
17.7.4.1 Conductivity Phantom with Giant Vesicle Suspension |
|
|
375 | (1) |
|
17.7.4.2 In Vivo Human Brain |
|
|
375 | (2) |
|
17.7.5 Clinical Applications of CTI |
|
|
377 | (2) |
|
17.7.6 Future Work in CTI |
|
|
379 | (2) |
|
|
381 | (2) |
|
Chapter 18 Geophysical ERT |
|
|
383 | (20) |
|
|
|
|
383 | (1) |
|
|
384 | (4) |
|
18.3 Research Applications |
|
|
388 | (4) |
|
18.4 Complex Resistivity and Induced Polarization |
|
|
392 | (1) |
|
18.5 Logarithmic Parametrization |
|
|
393 | (1) |
|
18.6 Absolute Reconstruction |
|
|
393 | (1) |
|
|
394 | (1) |
|
18.8 The Use of Electrode Models |
|
|
395 | (1) |
|
18.9 Modelling Open Domains |
|
|
395 | (1) |
|
|
396 | (2) |
|
18.11 Data Quality Measures |
|
|
398 | (1) |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (2) |
|
Chapter 19 Industrial Process Tomography |
|
|
403 | (20) |
|
|
|
|
|
403 | (2) |
|
|
405 | (3) |
|
19.2.1 Electrical Resistance Tomography (ERT) |
|
|
405 | (1) |
|
19.2.2 Electrical Capacitance Tomography (ECT) |
|
|
406 | (1) |
|
19.2.3 Magnetic Induction Tomography (MIT) |
|
|
407 | (1) |
|
19.2.4 Electrical Impedance Tomography |
|
|
407 | (1) |
|
19.2.5 Intrinsically Safe Systems |
|
|
408 | (1) |
|
19.3 Previous Industrial Applications of Electrical Tomography |
|
|
408 | (8) |
|
19.3.1 Applications of Electrical Resistance Tomography Technology to Pharmaceutical Processes |
|
|
408 | (2) |
|
19.3.2 Imaging the Flow Profile of Molten Steel Through a Submerged Pouring Nozzle |
|
|
410 | (1) |
|
19.3.3 The Application of Electrical Resistance Tomography to a Large Volume Production Pressure Filter |
|
|
411 | (2) |
|
19.3.4 A Novel Tomographic Flow Analysis System |
|
|
413 | (1) |
|
19.3.5 Application of Electrical Capacitance Tomography for Measurement of Gas/Solids Flow Characteristics in a Pneumatic Conveying System |
|
|
414 | (2) |
|
19.4 Recent Industrial Applications of Electrical Tomography |
|
|
416 | (5) |
|
19.4.1 Application of Electiical Resistance Tomography to the Measurement of Batch Mixing |
|
|
416 | (1) |
|
19.4.2 Application of Electrical Resistance Tomography to Inline Flow Measurement |
|
|
417 | (3) |
|
19.4.3 Application of Electrical Resistance Tomography to Cleaning-in-Place |
|
|
420 | (1) |
|
|
421 | (2) |
|
Chapter 20 Devices, History and Conferences |
|
|
423 | (14) |
|
|
423 | (2) |
|
20.2 Historical Perspective |
|
|
425 | (1) |
|
|
426 | (11) |
|
20.3.1 Commercial Systems |
|
|
426 | (4) |
|
|
426 | (2) |
|
|
428 | (2) |
|
|
430 | (1) |
|
|
430 | (7) |
|
20.3.2.1 Sheffield Mk 2 System |
|
|
430 | (1) |
|
20.3.2.2 Goettingen GoeMFII System |
|
|
431 | (1) |
|
20.3.2.3 Ecole Polytechnique de Montreal |
|
|
432 | (1) |
|
20.3.2.4 Russian Academy of Sciences Breast Imaging System |
|
|
432 | (1) |
|
|
433 | (1) |
|
20.3.2.6 Rensselaer Polytechnic Institute ACT 3 System |
|
|
434 | (1) |
|
20.3.2.7 KHU Mark2.5 System |
|
|
434 | (1) |
|
20.3.2.8 Dartmouth Broadband, High Frequency System |
|
|
435 | (2) |
Bibliography |
|
437 | (58) |
Index |
|
495 | |