Muutke küpsiste eelistusi

Electromagnetics: Theory, Techniques, and Engineering Paradigms 1997 ed. [Kõva köide]

  • Formaat: Hardback, 568 pages, kõrgus x laius: 235x155 mm, kaal: 2220 g, XX, 568 p., 1 Hardback
  • Ilmumisaeg: 30-Jun-1997
  • Kirjastus: Kluwer Academic/Plenum Publishers
  • ISBN-10: 0306455277
  • ISBN-13: 9780306455278
Teised raamatud teemal:
  • Kõva köide
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 568 pages, kõrgus x laius: 235x155 mm, kaal: 2220 g, XX, 568 p., 1 Hardback
  • Ilmumisaeg: 30-Jun-1997
  • Kirjastus: Kluwer Academic/Plenum Publishers
  • ISBN-10: 0306455277
  • ISBN-13: 9780306455278
Teised raamatud teemal:
During the last twenty years the lifestyle of a large portion of the inhabitants of our planet has changed dramatically. This would never have been possible without the massive use of electronic and photonic technology, telecommuni­ cations, and computers. These disciplines are designed to code, transmit, detect, decode, and process signals and related information, and can be broadly addressed as information science and technology. In the sophisticated society in which we live and operate, this science is diffused transversely and plays a major role in almost every human activity. Information science and technology is the basis of a powerful industry that does not suffer the shortcomings of more traditional human enterprises. Information is a renewable source and its control and processing rely on software codes, which are a creation of the mind, and on related hardware, incredibly sophisticated but made out of simple, abundant materials. The rate of change and transformation of this industry is the highest mankind has ever experienced, and it requires not only the replacement of technologies but also a continuous updating of expertise to keep up with the rapid transformation. There is no doubt that this calls for a change in university training, to avoid students graduating at an already obsolete level.
CHAPTER
1. Fundamentals
1(44)
1.1. Maxwell Equations
1(9)
1.1.1. The Current Density Equation
4(1)
1.1.2. The Independence of Maxwell Equations
4(1)
1.1.3. The Lentz-Neumann Law
4(2)
1.1.4. Polarization and Magnetization
6(2)
1.1.5. Field Sources
8(1)
1.1.6. Source Power
9(1)
1.2. Constitutive Relationships
10(12)
1.2.1. Nonlinear Media
14(1)
1.2.2. Linear Anisotropic Media
14(2)
1.2.3. Anisotropic Media Classification
16(1)
1.2.4. Linear Dispersive Media. I
17(2)
1.2.5. Linear Dispersive Media. II
19(1)
1.2.6. Chiral Media
20(1)
1.2.7. Fields at Space and Time Boundaries
20(2)
1.3. Energy and Momentum
22(8)
1.3.1. Electromagnetic Energy for Nonlinear Media
26(1)
1.3.2. Poynting's Theorem for Anisotropic Media
26(1)
1.3.3. Poynting's Theorem for Dispersive Media
27(1)
1.3.4. Lossless and Lossy Media
28(1)
1.3.5. The Radiation Pressure
28(2)
1.4. Initial and Boundary Conditions
30(7)
1.4.1. Electric and Magnetic Perfect Conductors
32(1)
1.4.2. The Radiation Condition
33(2)
1.4.3. The Edge Condition
35(2)
1.5. Symmetry Properties
37(5)
1.5.1. Image Theory
41(1)
1.5.2. The Duality Theorem for Inhomogeneous Media
42(1)
1.6. Summary and Selected References
42(1)
References
43(2)
CHAPTER
2. Elementary Solutions
45(38)
2.1. Plane Waves
45(9)
2.1.1. Lossy Media
48(2)
2.1.2. Anisotropic Media
50(4)
2.2. Plane Waves at Discontinuity Boundaries
54(11)
2.2.1. Conductive Media
61(1)
2.2.2. Bounded Waves
62(3)
2.3. Radiation from Prescribed Sources
65(16)
2.3.1. Elementary Sources
68(4)
2.3.2. Magnetic Sources
72(2)
2.3.3. Free-Space Green's Functions
74(2)
2.3.4. Vector and Scalar Potentials
76(2)
2.3.5. Radiation from Moving Sources
78(3)
2.4. Summary and Selected References
81(1)
References
82(1)
CHAPTER
3. Spectral Domains
83(58)
3.1. Preliminary Considerations
83(3)
3.1.1. Distributions and Dirac Functions
84(2)
3.2. The Frequency Domain
86(24)
3.2.1. Properties of Transformed Fields and Related Quantities
89(3)
3.2.2. Conductive Media
92(1)
3.2.3. Polar Dielectrics
93(1)
3.2.4. Magnetized Plasma
93(3)
3.2.5. Plane-Wave Propagation in Dispersive Media
96(5)
3.2.6. Plane-Wave Propagation in a Plasma Medium
101(1)
3.2.7. Plane-Wave Propagation in a Conductive Medium
102(2)
3.2.8. Plane Wave at a (Space) Discontinuity Boundary
104(3)
3.2.9. Radiation in Dispersive Media
107(2)
3.2.10. Scalar Green's Function Evaluation
109(1)
3.3. The Wavenumber Domain
110(5)
3.3.1. Radiation from Prescribed Sources
112(3)
3.4. The Wavenumber-Frequency Domain
115(11)
3.4.1. Space Dispersive Media. Compressible Plasma
116(2)
3.4.2. Radiation in Isotropic Homogeneous Media
118(1)
3.4.3. The Resonant Wave Solution
119(4)
3.4.4. Guided-Wave Representation
123(3)
3.5. The Field Representation
126(12)
3.5.1. Fields and the Plane-Wave Spectrum Relationship
128(2)
3.5.2. Asymptotic Evaluation of the Far Field
130(3)
3.5.3. Radiation from Apertures
133(2)
3.5.4. Gaussian Beams
135(3)
3.6. Summary and Selected References
138(2)
References
140(1)
CHAPTER
4. Narrowband Signals and Phasor Fields
141(86)
4.1. Narrowband Signals
141(14)
4.1.1. Phasor Evaluation
145(1)
4.1.2. Linear Operations on Phasors
145(2)
4.1.3. Response of a Linear Time-Invariant Circuit to a Narrowband Signal
147(1)
4.1.4. Quadratic Averages
148(1)
4.1.5. Power and Phasors
149(2)
4.1.6. Bandlimited Signals
151(3)
4.1.7. Almost Bandlimited Signals
154(1)
4.2. Complex Vectors
155(15)
4.2.1. Scalar Product for Complex Vectors and Some of Their Properties
160(2)
4.2.2. Polarization States
162(1)
4.2.3. Stokes Parameters and the Poincare Sphere
163(5)
4.2.4. Field Coherence
168(2)
4.3. Maxwell Equations in Phasor Form
170(9)
4.3.1. Poynting's Theorem
171(2)
4.3.2. The Energy Theorem
173(2)
4.3.3. Uniqueness
175(1)
4.3.4. Image Theory
176(1)
4.3.5. Duality Transformation
176(1)
4.3.6. Reciprocity
176(2)
4.3.7. The Equivalence Theorem
178(1)
4.4. Plane-Wave Propagation
179(14)
4.4.1. Propagation of a Gaussian Wavepacket in a Plasma Medium
184(2)
4.4.2. Information Scrambling through a Dispersive Channel
186(2)
4.4.3. Plane-Wave Propagation in a Magnetized Plasma
188(5)
4.5. Guided Propagation
193(17)
4.5.1. Oblique Incidence on a Dielectric Half-Space
195(6)
4.5.2. Guided Propagation along a Dielectric Slab
201(4)
4.5.3. Propagation inside a Parallel-Plate Guide
205(1)
4.5.4. Guided Propagation along Cylindrical Structures
206(4)
4.6. Radiation from Prescribed Sources
210(15)
4.6.1. The Elementary Electric Dipole
212(3)
4.6.2. The Elementary Magnetic Dipole
215(2)
4.6.3. The Elementary Huygens Source
217(3)
4.6.4. Radiation from Planar Sources
220(2)
4.6.5. Radiation from Linear Arrays
222(3)
4.7. Summary and Selected Reference
225(1)
References
226(1)
CHAPTER
5. High-Frequency Fields
227(68)
5.1. Asymptotic Form of Maxwell Equations
227(12)
5.1.1. The Transport Equation
232(1)
5.1.2. Rays in a Homogeneous Medium
233(2)
5.1.3. Ray Propagation in a Layered Medium
235(3)
5.1.4. Polarization Change along a Ray
238(1)
5.2. Ray Properties
239(12)
5.2.1. Reflector Antennas
245(1)
5.2.2. Lens Antennas
246(2)
5.2.3. Guided Propagation
248(3)
5.3. The Ray Coordinate System
251(9)
5.3.1. High-Frequency Propagation in a Homogeneous Environment
255(1)
5.3.2. Ray Amplitude at Reflection Boundaries: The Two-Dimensional Case
256(2)
5.3.3. Ray Amplitude at Reflection Boundaries: The Three-Dimensional Case
258(2)
5.4. Asymptotic Form of Field Representations
260(32)
5.4.1. Scattering by a Conducting Half-Plane
266(6)
5.4.2. The Edge Ray
272(3)
5.4.3. Transition Functions
275(2)
5.4.4. The Slope Diffraction Coefficient
277(2)
5.4.5. The Lateral Ray
279(5)
5.4.6. The Creeping Ray
284(8)
5.5. Summary and Selected References
292(1)
References
293(2)
CHAPTER
6. The Numerical Domain
295(36)
6.1. General Considerations
295(8)
6.1.1. Matrix Equations
298(1)
6.1.2. Matrix Inversion
298(1)
6.1.3. Eigenvalue Computation
299(2)
6.1.4. Matrix Condition
301(2)
6.2. The Method of Moments
303(7)
6.2.1. The Electromagnetic Field Integral Equations
305(3)
6.2.2. Scattering by a Metal Strip
308(2)
6.3. The Finite Element Method
310(14)
6.3.1. Elements and Element Bases
314(6)
6.3.2. Guided-Wave Propagation
320(1)
6.3.3. Absorbing Boundary Conditions
321(3)
6.4. The Finite Difference Method
324(5)
6.4.1. Stability and Numerical Dispersion
326(2)
6.4.2. FDM in the Frequency Domain
328(1)
6.5. Summary and Selected References
329(1)
References
330(1)
CHAPTER
7. Engineering Topics: Propagation
331(96)
7.1. General Considerations
331(1)
7.2. Transmission Lines
332(24)
7.2.1. The Telegraphists' Equations
336(4)
7.2.2. Reflection Coefficient and Impedance
340(5)
7.2.3. Matching
345(2)
7.2.4. Multisection Transmission Lines
347(3)
7.2.5. Nonuniform Transmission Lines
350(3)
7.2.6. Multiconductor Transmission Lines
353(2)
7.2.7. Transmission Line Generators
355(1)
7.3. Equivalent Transmission Lines: Two-Dimensional Structures
356(8)
7.3.1. Multilayer Propagation
359(2)
7.3.2. Transverse Resonance
361(1)
7.3.3. Propagation along a Grounded Slab
362(2)
7.4. Equivalent Transmission Lines: Three-Dimensional Structures
364(34)
7.4.1. The Rectangular Waveguide
370(3)
7.4.2. The Circular Waveguide
373(3)
7.4.3. The Coaxial Cable
376(2)
7.4.4. Mode Orthogonality and Power Flux
378(3)
7.4.5. Waveguide Excitation
381(2)
7.4.6. Waveguide Losses
383(3)
7.4.7. The Inhomogeneous Rectangular Waveguide
386(2)
7.4.8. The Fiber
388(1)
7.5. Planar Guiding Configurations
398(2)
7.5.1. The Effective Dielectric Constant
399(1)
7.6. Equivalent Circuits
400(25)
7.6.1. Computation of Matrix Entries
403(2)
7.6.2. Junction Matrix Properties
405(3)
7.6.3. Shift of Port Position
408(1)
7.6.4. The Three-Port Junction
409(1)
7.6.5. The Four-Port Junction
410(3)
7.6.6. The Directional Coupler
413(5)
7.6.7. Periodic Structures
418(3)
7.6.8. Obstacles in Waveguides
421(4)
7.7. Summary and Selected References
425(1)
References
426(1)
CHAPTER
8. Engineering Topics: Radiation
427(74)
8.1. Transmitting and Receiving Antennas
427(5)
8.1.1. Reciprocity Theory and Antennas
429(3)
8.2. Parameters of the Transmitting Antenna
432(8)
8.2.1. The Radiation Parameters of the Elementary Loop Antenna
435(1)
8.2.2. The Radiation Parameters of the Elementary Huygens Source
436(1)
8.2.3. Input Resistance of Elementary Antennas
436(1)
8.2.4. Antenna Beamwidth
437(2)
8.2.5. Mechanical Forces on Antennas
439(1)
8.3. Parameters of the Receiving Antenna
440(7)
8.3.1. Power and Polarization Matching
443(1)
8.3.2. The Radio Link Equation
444(1)
8.3.3. Effective Area of Elementary Antennas
444(1)
8.3.4. Noise Temperature of the Antenna
445(2)
8.4. Wire Antennas
447(16)
8.4.1. Short Antennas
452(1)
8.4.2. The Half-Wave Dipole Antenna
453(4)
8.4.3. The Traveling-Wave Antenna
457(2)
8.4.4. Mutual Impedance
459(4)
8.5. Aperture Antennas
463(13)
8.5.1. The Rectangular Aperture
465(5)
8.5.2. The Circular Aperture
470(3)
8.5.3. The Patch Antenna
473(3)
8.6. Reflector Antennas
476(15)
8.6.1. The Parabolic Dish
479(4)
8.6.2. Computation of the Reflector Radiation Diagram via the Current Integration Method
483(4)
8.6.3. Computation of the Reflector Radiation Diagram via Optical Techniques
487(4)
8.7. Arrays
491(8)
8.7.1. Array with Uniform Excitation
494(2)
8.7.2. Array with Tapered Excitation
496(1)
8.7.3. The Binomial Array
497(1)
8.7.4. Sum and Difference Patterns
498(1)
8.8. Summary and Selected References
499(1)
References
500(1)
CHAPTER
9. Engineering Topics: Scattering
501(46)
9.1. Interior Resonance
501(18)
9.1.1. The Parallelepiped Cavity
506(2)
9.1.2. The Loaded Coaxial Cavity
508(3)
9.1.3. Multimode Cavities
511(2)
9.1.4. Open Cavities
513(2)
9.1.5. Energy Decay in the Cavity
515(1)
9.1.6. Equivalent Circuit of the Cavity
516(3)
9.2. Exterior Resonance
519(13)
9.2.1. Cylindrical Coordinates
523(4)
9.2.2. Spherical Coordinates
527(5)
9.3. Exterior Scattering via Asymptotic Techniques
532(12)
9.3.1. Rough Surfaces
533(3)
9.3.2. Scattering by a Planar Rough Surface
536(8)
9.4. Summary and Selected References
544(1)
References
545(2)
APPENDIXES 547(18)
A. Vector Analysis 547(6)
B. Dyadic Analysis 553(2)
C. Useful Integrals and Series 555(2)
D. Special Functions and Asymptotic Evaluations 557(8)
INDEX 565