Muutke küpsiste eelistusi

Electronic Circuit and System Simulation Methods [Kõva köide]

, , , (Professor of Electrical and Computer Engineering, Carnegie-Mellon University, USA)
  • Formaat: Hardback, 392 pages, kõrgus x laius: 229x157 mm, kaal: 700 g, 100 illustrations
  • Ilmumisaeg: 01-Jan-1995
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0070501696
  • ISBN-13: 9780070501690
  • Kõva köide
  • Hind: 89,64 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Electronic Circuit and System Simulation Methods
  • Formaat: Hardback, 392 pages, kõrgus x laius: 229x157 mm, kaal: 700 g, 100 illustrations
  • Ilmumisaeg: 01-Jan-1995
  • Kirjastus: McGraw-Hill Inc.,US
  • ISBN-10: 0070501696
  • ISBN-13: 9780070501690
This text demonstrates how sophisticated electronic simulation tools capable of analyzing large, complicated circuits can be built up from basic principles of elementary circuit analysis and numerical methods. It applies these principles to SPICE, explaining why it doesn't work in certain cases.
Preface ix
Introduction to Circuit Simulation
1(26)
Traditional Circuit Simulation
1(1)
Linear, Time-Invariant Circuits
2(2)
Nodal Analysis
4(2)
Nodal Admittance Equation Stamps
6(5)
Nonlinear (dc) Circuit Analysis
11(6)
Small Signal (ac) Analysis
17(1)
Linear Transient Analysis
18(6)
Nonlinear Transient Analysis
24(1)
Summary
24(2)
References
26(1)
Linear dc Nodal Analysis
27(20)
Voltage-Controlled Current Sources
27(4)
Independent Voltage Sources
31(3)
(Conventional) Nodal Analysis
34(2)
Controlled Sources in General
36(4)
Operational Amplifiers
40(2)
When Do Nodal Equations Fail?
42(1)
DC Solution of Circuits with Energy Storage: C-cutsets and L-loops
43(1)
Summary
44(1)
References
45(2)
Solution of Linear Equations
47(28)
Gaussian Elimination
47(3)
LU Factorization
50(4)
How LU Factorization Works
54(4)
Pivot Conditioning
58(6)
Iterative Refinement
64(3)
Sensitivity Analysis
67(7)
Summary
74(1)
References
74(1)
Linear Transient Analysis I
75(40)
The One-Step Integration Approximations
75(5)
Forward Euler Approximation
80(1)
Backward Euler Approximation
81(1)
Trapezoidal Approximation
82(1)
Companion Models for Inductors
82(4)
Preliminary Comments on Accuracy
86(1)
The Exact Solution of a Simple Series RC Circuit
87(8)
Comparison of One-Step Integration Approximations with the Exact Solution
95(5)
Accuracy of One-Step Approximations
100(5)
Stability of One-Step Integration Approximation
105(4)
LTE Estimation via Divided Difference Approximations
109(4)
Inductance
113(1)
Summary
113(1)
References
113(2)
Linear Transient Analysis II
115(26)
Multiple Energy Storage Elements
115(10)
Step and Ramp Inputs
125(3)
One-Step Integration Approximations
128(6)
Stability
134(5)
Limitations of One-Step Integration Models
139(1)
References
140(1)
Frequency Domain Analysis and Moment-Matching Methods
141(48)
Small Signal ac Analysis
141(4)
Pole/Zero Analysis
145(2)
Laplace Transform of the State Equations
147(2)
Moments of the Impulse Response and Linear Delay Estimation
149(3)
The Elmore Delay and RC Trees
152(1)
Moments of the Impulse Response
153(3)
Efficiently Computing Moments for RC Trees
156(2)
Dominant Pole Approximations
158(3)
Dominant Poles via Moment Matching
161(4)
Computing Moments for Generalized Circuits
165(4)
Generalized Moment Matching
169(6)
Practical (Numerical) Considerations
175(7)
Sensitivity Analysis
182(4)
Conclusions
186(1)
References
186(3)
Sparse Matrices and Some of Their Implications
189(28)
Introduction
189(1)
Sparse Nodal Admittance Matrices
190(4)
Ordering of Sparse Matrices
194(2)
Suboptimal Ordering
196(2)
Numerical Conditioning and Partial Pivoting
198(2)
Sparse Tableau Analysis
200(4)
Qualitative Attributes of the Sparse Tableau
204(2)
Relation of the Sparse Tableau to Other Solution Schemes
206(2)
The Original Sparse Tableau Approach
208(2)
Some Sparse Tableau Modeling Considerations
210(4)
References
214(3)
Circuit Partitioning and Large Change Sensitivity
217(22)
Adding a Resistance Between Two Nodes
218(9)
Node Tearing
227(4)
Multiple Voltage Source Additions
231(6)
References
237(2)
Incremental Sensitivity
239(46)
Direct Circuit Sensitivities
240(4)
Matrix Interpretation of Direct Sensitivity
244(2)
Controlled Sources and Nonlinear Elements
246(3)
Adjoint Sensitivity Analysis
249(2)
The Adjoint Sensitivity Relation
251(1)
Simple Reciprocal (R, G, V, I) Linear dc Circuits
252(7)
Sensitivities with Respect to Dependent Source Values
259(5)
Adjoint Circuit Representation of Some Other Multi-Terminal Circuit Elements
264(3)
The Sparse Tableau Interpretation of Adjoint Sensitivity
267(7)
Some Possible Applications of Adjoint Sensitivity
274(3)
Time and Frequency Domain Sensitivity Analysis
277(6)
References
283(2)
Simulation of Nonlinear Circuits
285(30)
SPICE
285(2)
Nonlinear dc Analysis
287(1)
Newton-Raphson Iteration
288(3)
Damped Newton-Raphson Iteration
291(4)
Multi-Dimensional Newton-Raphson Iteration
295(2)
Multi-Terminal Elements
297(9)
Nonlinear Transient Analysis
306(2)
Nonlinear Energy Storage Elements
308(5)
The Bottom Line
313(1)
References
314(1)
Timing Simulation
315(46)
The Quest for Other Methods of Simulation
315(1)
Static vs. Dynamic Simulation
316(1)
Dynamic Simulation
317(5)
Motivation for Timing Simulation
322(3)
The MOS Timing Simulator (MOTIS)
325(3)
ELogic and SAMSON
328(4)
Piecewise Approximate Timing Simulation
332(17)
Relaxation Methods in Circuit Simulation
349(7)
Conclusions
356(1)
References
356(5)
Appendix A Tree/Link Analysis 361(24)
A.1 Graphs
361(2)
A.2 Fundamental Loops and Cutsets
363(3)
A.3 The Incidence Matrix
366(2)
A.4 Sparse Tableau and Reduced Tableau Analysis
368(1)
A.5 Loop and Cutset Matrices
369(2)
A.6 Circuit Equations in Terms of Loops and Cutsets
371(5)
A.7 Tree Selection Procedure
376(7)
A.8 References
383(2)
Index 385