Muutke küpsiste eelistusi

Elegant Circuits: Simple Chaotic Oscillators [Kõva köide]

(Univ Of Wisconsin-madison, Usa), (Univ Of Michigan, Usa)
  • Formaat: Hardback, 356 pages
  • Ilmumisaeg: 11-Feb-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811239991
  • ISBN-13: 9789811239991
Teised raamatud teemal:
  • Formaat: Hardback, 356 pages
  • Ilmumisaeg: 11-Feb-2022
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811239991
  • ISBN-13: 9789811239991
Teised raamatud teemal:

Chaos is the study of the underlying determinism in the seemingly random phenomena that occur all around us. One of the best experimental demonstrations of chaos occurs in electrical circuits when the parameters are chosen carefully. We will show you how to construct such chaotic circuits for use in your own studies and demonstrations while teaching you the basics of chaos. This book should be of interest to researchers and hobbyists looking for a simple way to produce a chaotic signal. It should also be useful to students and their instructors as an engaging way to learn about chaotic dynamics and electronic circuits. The book assumes only an elementary knowledge of calculus and the ability to understand a schematic diagram and the components that it contains. You will get the most out of this book if you can construct the circuits for yourself. There is no substitute for the thrill and insight of seeing the output of a circuit you built unfold as the trajectory wanders in real time across your oscilloscope screen. A goal of this book is to inspire and delight as well as to teach.

Preface vii
1 Introduction
1(1)
1.1 Electronic Oscillators
1(3)
1.2 Relaxation Oscillators
4(4)
1.3 van der Pol Oscillator
8(2)
1.4 Sinusoidally Forced van der Pol Oscillator
10(3)
1.5 Primer on Chaos
13(4)
1.6 Basins of Attraction and Robustness
17(2)
1.7 Early Chaotic Oscillators
19(2)
1.8 Circuit Dynamical Equations
21(4)
1.9 Theoretical Analysis
25(1)
1.10 Parameter Scaling
26(2)
1.11 Construction and Analysis
28(10)
1.12 Circuit Elegance
38(3)
2 Conventional Diode Circuits
41(48)
2.1 Diode Characteristics
41(8)
2.1.1 Ideal diode
41(1)
2.1.2 PN junction diode at equilibrium
42(2)
2.1.3 PN junction with an applied voltage
44(1)
2.1.4 I-V characteristic of the PN junction
45(3)
2.1.5 Capacitance of the PN junction
48(1)
2.2 Forced Diode Resonator
49(2)
2.3 Vilnius Oscillator
51(6)
2.4 Banlue-Rattikarn Circuit
57(4)
2.5 Banlue-Buncha Diode Circuit
61(6)
2.6 Chaotic Wien Bridge Oscillator
67(5)
2.7 Elwakil-Kennedy Diode Oscillator
72(5)
2.8 Saito Family Diode Circuit
77(7)
2.9 Diode Jerk Circuit
84(5)
3 Transistor Circuits
89(60)
3.1 Transistor Characteristics
89(8)
3.1.1 Bipolar junction transistor (BJT)
89(1)
3.1.2 BJT I-V characteristic
90(4)
3.1.3 Field effect transistor
94(2)
3.1.4 FET I-V characteristic
96(1)
3.2 Chaotic Colpitts Oscillator
97(4)
3.3 Minati Circuit
101(7)
3.4 Minati-Frasca Double-scroll Circuit
108(3)
3.5 Minati-Frasca Spiking Circuit
111(6)
3.6 Chaotic BJT Switch
117(8)
3.7 Lindberg-Murali-Tamasevicius Circuit
125(5)
3.8 Chaotic Hartley Oscillator
130(3)
3.9 JFET-based Wien Bridge Oscillator
133(7)
3.10 Chaotic MOS Amplifier
140(9)
4 Tunnel Diode Circuits
149(24)
4.1 Tunnel Diode Junction
149(4)
4.1.1 Tunnel diode I-V characteristic
150(1)
4.1.2 Tunnel diode emulator
151(2)
4.2 Forced Relaxation Oscillator
153(5)
4.3 Autonomous Relaxation Oscillator
158(4)
4.4 Chua Tunnel Diode Oscillator
162(3)
4.5 Coupled Relaxation Oscillator
165(8)
5 Thyristor Circuits
173(32)
5.1 Thyristor Characteristics
173(6)
5.1.1 Silicon controlled rectifier
173(2)
5.1.2 Silicon bilateral switch
175(2)
5.1.3 Thyristor I-V characteristic
177(2)
5.2 Forced Thyristor Circuit
179(5)
5.3 van der Pol Relaxation Oscillator
184(3)
5.4 Autonomous Relaxation Oscillator
187(4)
5.5 Coupled Relaxation Oscillators
191(4)
5.6 Many Coupled Oscillators
195(4)
5.7 Saito Family Thyristor Circuit
199(6)
6 Saturating Amplifier Circuits
205(36)
6.1 Operational Amplifiers
205(3)
6.1.1 Operational amplifier transfer characteristic
206(1)
6.1.2 Comparators
207(1)
6.2 Saturating Wien Bridge Oscillator
208(4)
6.3 Murali-Lakshmanan-Chua Circuit
212(4)
6.4 Wang-Zhang-Bao Circuit
216(1)
6.5 Coupled RC Circuits
217(4)
6.6 Ketthong-Banlue Circuit
221(3)
6.7 Saito Family Hysteresis Circuit
224(4)
6.8 Saito Family Switch Circuit
228(5)
6.9 Simplified Piper-Sprott Circuit
233(8)
7 Analog Multiplier Circuits
241(34)
7.1 Analog Multipliers
241(2)
7.1.1 Analog computers
241(1)
7.1.2 AD633 multiplier
242(1)
7.2 Lorenz System
243(2)
7.3 Rossler Prototype-4 System
245(4)
7.4 Original Ueda System
249(4)
7.5 Simple Jerk System
253(7)
7.6 Petrzela-Polak Circuit
260(1)
7.7 Dissipative Nose-Hoover System
261(7)
7.8 Signum Thermostat
268(7)
8 Nonlinear Inductor Circuits
275(22)
8.1 Ferromagnetism
275(6)
8.1.1 Magnetic properties of ferromagnets
275(2)
8.1.2 Saturating inductor model
277(1)
8.1.3 Ferrite-core inductor construction
278(1)
8.1.4 Ferrite-core inductor measurement
279(2)
8.2 Forced Ferroresonant Circuit
281(4)
8.3 Saito Family Inductor Circuit
285(7)
8.4 Minimal 3D Autonomous Inductor Circuit
292(5)
9 Memristor Circuits
297(32)
9.1 Memristors
297(8)
9.1.1 Memristor I-V characteristic
298(3)
9.1.2 Ag-chalcogenide memristor
301(2)
9.1.3 Memristor measurement and model
303(2)
9.2 Forced Memristor Circuit
305(5)
9.3 Saito Family Memristor Circuit
310(3)
9.4 Memristive Wien Bridge Oscillator
313(4)
9.5 Elwakil-Kennedy Memristor Oscillator
317(4)
9.6 Senani-Singh Memristor Oscillator
321(8)
Bibliography 329(10)
Index 339(4)
About the Authors 343