Preface |
|
vii | |
|
|
1 | (30) |
|
|
1 | (3) |
|
|
4 | (2) |
|
|
6 | (2) |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (3) |
|
|
19 | (1) |
|
|
20 | (5) |
|
|
25 | (1) |
|
1.12 Three-dimensional Maps |
|
|
25 | (1) |
|
1.13 Resolution and Image Size |
|
|
26 | (1) |
|
1.14 A Comment on Elegance |
|
|
27 | (4) |
|
|
31 | (26) |
|
2.1 Six-dimensional Quadratic Maps |
|
|
31 | (1) |
|
|
32 | (3) |
|
|
35 | (3) |
|
|
38 | (3) |
|
|
41 | (1) |
|
|
42 | (3) |
|
2.7 Largest Lyapunov Exponent |
|
|
45 | (2) |
|
2.8 Spectrum of Lyapunov Exponents |
|
|
47 | (2) |
|
2.9 Kaplan--Yorke Dimension |
|
|
49 | (5) |
|
2.10 Correlation Dimension |
|
|
54 | (3) |
|
|
57 | (22) |
|
3.1 Six-dimensional Cubic Maps |
|
|
57 | (1) |
|
|
58 | (2) |
|
3.3 Three-dimensional Cubic Maps |
|
|
60 | (1) |
|
3.4 Other Odd and Even Functions |
|
|
61 | (2) |
|
3.5 Six-dimensional Signum Maps |
|
|
63 | (2) |
|
3.6 Four-dimensional Sine Maps |
|
|
65 | (1) |
|
3.7 Four-dimensional Tangent Maps |
|
|
65 | (2) |
|
3.8 Four-dimensional Hyperbolic Sine Maps |
|
|
67 | (1) |
|
3.9 Four-dimensional Hyperbolic Tangent Maps |
|
|
67 | (3) |
|
3.10 Six-dimensional Integer Function Maps |
|
|
70 | (3) |
|
|
73 | (6) |
|
|
79 | (24) |
|
4.1 Three-dimensional Quadratic Flows |
|
|
79 | (5) |
|
4.2 Three-dimensional Cubic Jerk Flows |
|
|
84 | (2) |
|
4.3 Four-dimensional Sine Hyperjerk Flows |
|
|
86 | (1) |
|
4.4 Four-dimensional Hyperbolic Tangent Hyperjerk Flows |
|
|
86 | (3) |
|
4.5 Generalized Lorenz System |
|
|
89 | (2) |
|
|
91 | (2) |
|
4.7 The Rossler Prototype-4 System |
|
|
93 | (1) |
|
4.8 The Diffusionless Lorenz System |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
95 | (8) |
|
5 Iterated Function Systems |
|
|
103 | (22) |
|
5.1 Affine Transformations |
|
|
103 | (1) |
|
5.2 Two-dimensional Linear Systems |
|
|
104 | (4) |
|
5.3 Three-dimensional Linear Systems |
|
|
108 | (1) |
|
5.4 Two-dimensional Quadratic Systems |
|
|
108 | (5) |
|
5.5 Three-dimensional Cubic Systems |
|
|
113 | (1) |
|
|
113 | (3) |
|
5.7 Alternate Coloring Scheme |
|
|
116 | (9) |
|
|
125 | (28) |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
128 | (5) |
|
6.5 Iterated Function System Basins |
|
|
133 | (1) |
|
6.6 General Escape-time Plots |
|
|
134 | (6) |
|
6.7 Generalized Julia Sets |
|
|
140 | (4) |
|
|
144 | (1) |
|
|
144 | (4) |
|
6.10 Alternate Coloring Scheme |
|
|
148 | (5) |
|
|
153 | (28) |
|
7.1 Elementary One-dimensional Cellular Automata |
|
|
153 | (3) |
|
7.2 General One-dimensional Cellular Automata |
|
|
156 | (5) |
|
|
161 | (2) |
|
7.4 Two-dimensional Cellular Automata |
|
|
163 | (3) |
|
7.5 Artificial Neural Networks |
|
|
166 | (5) |
|
|
171 | (1) |
|
7.7 Coupled Flow Lattices |
|
|
172 | (2) |
|
7.8 Partial Differential Equations |
|
|
174 | (7) |
|
|
181 | (24) |
|
8.1 Random Number Generators |
|
|
181 | (3) |
|
|
184 | (2) |
|
|
186 | (4) |
|
8.4 Diffusion Limited Aggregation |
|
|
190 | (2) |
|
|
192 | (5) |
|
8.6 Stochastic Cellular Automata |
|
|
197 | (3) |
|
|
200 | (5) |
|
|
205 | (28) |
|
9.1 Regular Tilings of the Plane |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
208 | (1) |
|
9.4 Stochastic Fractal Squares |
|
|
209 | (4) |
|
9.5 The Gilbert Tessellation |
|
|
213 | (2) |
|
9.6 The Logarithmic Spiral |
|
|
215 | (1) |
|
|
216 | (2) |
|
|
218 | (15) |
|
|
233 | (6) |
|
|
233 | (3) |
|
|
236 | (1) |
|
10.3 Extensions of the Method |
|
|
237 | (1) |
|
10.4 Other Elegant Concepts |
|
|
238 | (1) |
Bibliography |
|
239 | (8) |
Index |
|
247 | (6) |
About the Author |
|
253 | |