Muutke küpsiste eelistusi

Elementary Symplectic Topology and Mechanics 2015 ed. [Pehme köide]

  • Formaat: Paperback / softback, 222 pages, kõrgus x laius: 235x155 mm, kaal: 3752 g, 11 Illustrations, color; 33 Illustrations, black and white; XVII, 222 p. 44 illus., 11 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 16
  • Ilmumisaeg: 12-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331911025X
  • ISBN-13: 9783319110257
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 222 pages, kõrgus x laius: 235x155 mm, kaal: 3752 g, 11 Illustrations, color; 33 Illustrations, black and white; XVII, 222 p. 44 illus., 11 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 16
  • Ilmumisaeg: 12-Dec-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 331911025X
  • ISBN-13: 9783319110257
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of th

is theory are exposed in Chapter 8: aspects of Poincaré"s last geometric theorem and the Arnol"d conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrödinger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.

Beginning.- Notes on Differential Geometry.- Symplectic Manifolds.- Poisson brackets environment.- Cauchy Problem for H-J equations.- Calculus of Variations and Conjugate Points.- Asymptotic Theory of Oscillating Integrals.- Lusternik-Schnirelman and Morse.- Finite Exact Reductions.- Other instances.- Bibliography.

Arvustused

This book brings the reader from the basics of symplectic topology through several concepts and issues relative to Hamiltonian and Lagrangian systems, Hamilton-Jacobi equations, the calculus of variations, and Morse and Lusternik-Schnirelman theories. The book seems best suited to researchers and students from graduate level onwards. (Maria Letizia Bertotti, Mathematical Reviews, August, 2015)

1 Notes on Differential Geometry
1(32)
1.1 Charts and Atlases
2(2)
1.2 Tangent Bundle TQ
4(3)
1.3 Cotangent Bundle T* Q
7(2)
1.4 Tangent Map
9(1)
1.5 Submanifolds
10(2)
1.5.1 Generic Non-triviality of the Tangent Bundles
12(1)
1.6 Differential Forms
12(6)
1.6.1 Forms
13(1)
1.6.2 Differentials-Forms
14(1)
1.6.3 Exterior Differential
15(2)
1.6.4 Pull-Back and Push-Forward of Differential Forms
17(1)
1.7 Lie Derivative
18(1)
1.8 Interlude: The Cohomology of R3
19(1)
1.9 Homotopy Formula and Lie Brackets
20(3)
1.9.1 Conjugation Lemma and Commutation Theorem
21(2)
1.10 Riemann Metrics and Tensors
23(10)
1.10.1 Riemann Metrics
23(1)
1.10.2 Tensors
24(1)
1.10.3 Volume Form Associated to a Riemann Metric
25(1)
1.10.4 Interlude: The Hodge-Star and Some More Cohomology of R3
26(1)
1.10.5 Stokes Theorem
27(1)
1.10.6 Maxwell's Equations
28(2)
1.10.7 A 'Thermodynamic' Interpretation of ΩO and Ωn
30(1)
1.10.8 Partitions of Unity and Whitney's Theorem
31(2)
2 Symplectic Manifolds
33(34)
2.1 Definitions and Darboux Theorem
33(3)
2.2 Isotropic, Coisotropic and Lagrangian Submanifolds
36(3)
2.3 A Theorem of Maslov-Hormander
39(9)
2.3.1 Local Parameterization of Lagrangian Submanifolds
39(5)
2.3.2 Example
1. The Problem of the Inversion of Gradient Maps: A Global Natural Setting for the Legendre Transformation
44(1)
2.3.3 Example 2: The Zeldovich-Arnol'd Model of the Formation of Galaxies
45(3)
2.4 Hamiltonian Systems
48(1)
2.5 Hamilton-Jacobi Equation
49(2)
2.6 Canonical Transformations
51(5)
2.7 Complete Integrals of H-J
56(2)
2.8 Basic Algebra of the Generating Functions
58(4)
2.8.1 Prelude: Variational Principle of Hamilton-Helmholtz
58(1)
2.8.2 The Generating Function with Infinite Parameters
58(2)
2.8.3 The Finite Reduction
60(1)
2.8.4 The Composition Rule
60(1)
2.8.5 The Identity
61(1)
2.8.6 The Inverse
61(1)
2.8.7 Lagrangian Submanifolds Transformed by a CT
62(1)
2.9 Gromov's Nonsqueezing Theorem
62(3)
2.9.1 A 'Heisenberg Principle' for Classical Mechanics
63(1)
2.9.2 A Bound on Non-feedback Stabilization
64(1)
2.9.3 Another Gromov's Result
64(1)
2.10 A Symplectic Setting for Pontryagin Maximum Principle
65(2)
3 Poisson Brackets Environment
67(6)
3.1 A Prologue: Matrix Structures
67(1)
3.2 General Vector Fields: Lie Brackets
68(2)
3.3 Hamiltonian Vector Fields: Poisson Brackets
70(3)
3.3.1 Some Algebraic Properties of (C∞(M;R), {.,.})
71(2)
4 Cauchy Problem for Hamilton-Jacobi Equations
73(32)
4.1 Classical Cauchy Problem
73(1)
4.2 Geometric Cauchy Problem
74(5)
4.2.1 The Case of Evolutive H-J: Direct Construction
76(3)
4.3 A New Look to the Principal Function of Hamilton: Propagator
79(8)
4.3.1 A Diagram Explanation: Embedding Σ → Q, Pull-Back and Pairing
84(1)
4.3.2 Elimination of Parameters: Envelopes
84(2)
4.3.3 Geometric and Viscosity Solutions
86(1)
4.3.4 A Synopsis on Viscosity Solutions for H-J Equations
86(1)
4.4 Geometrical Solutions: Examples
87(5)
4.4.1 A Complete Elimination of the Auxiliary Parameters
87(1)
4.4.2 An Eikonal Equation
88(2)
4.4.3 On H-J Equation and Systems of Conservation Laws
90(2)
4.5 Towards Weak KAM Theory
92(13)
4.5.1 The Cell Problem
93(1)
4.5.2 The Time Asymptotic Behavior
94(1)
4.5.3 A 'Thermodynamic' Interpretation of the Weak KAM Theory
95(2)
Appendix 1 Envelopes, a (Very) Brief Introduction
97(1)
Appendix 2 Computation of Caustics via Projective Duality
98(7)
5 Calculus of Variations, Conjugate Points and Morse Index
105(24)
5.1 Legendre Transform and Young Inequality
105(1)
5.2 Theory of Poincare-Cartan
106(2)
5.3 Conjugate Points
108(5)
5.4 Morse Index Theorem
113(16)
5.4.1 Second Variation of the Action Functional
114(7)
Appendix
121(8)
6 A Short Introduction to the Asymptotic Theory of Rapidly Oscillating Integrals
129(8)
6.1 Schrodinger Equation
130(2)
6.2 Stationary Phase Method
132(5)
6.2.1 Towards the Quantization Conditions
134(3)
7 Notes on Lusternik-Schnirelman and Morse Theories
137(60)
7.1 Relative Cohomology and Lusternik-Schnirelman Theory
138(13)
7.1.1 Relative Cohomology
138(4)
7.1.2 Lusternik-Schnirelman Theory
142(7)
7.1.3 A Dramatic Doubt
149(2)
7.2 Generating Functions Quadratic at Infinity and Variational Solutions for H-J
151(10)
7.2.1 Generating Functions
151(3)
7.2.2 GFQI Are Palais-Smale
154(2)
7.2.3 Variational Min-Max Solutions for H-J Equations
156(5)
7.3 Interlude: Poincare Duality and Thorn Isomorphism
161(2)
7.3.1 Poincare Duality
161(1)
7.3.2 Cohomological Spheres
162(1)
7.3.3 Thorn Isomorphism
163(1)
7.4 Critical Points of GFQI and Fixed Points of Hamiltonian Diffeomorphisms: A Construction of Viterbo
163(5)
7.5 Viterbo Invariants: A Road Map to Symplectic Topology
168(12)
7.5.1 Appendix 1: c(μ, ƒ) = maxxN ƒ(x)
177(2)
7.5.2 Appendix 2: Reminder on Canonical Transformations
179(1)
7.6 A Theory of C0-Commuting Hamiltonians
180(2)
7.7 The Eliashberg-Gromov Rigidity Theorem
182(3)
7.8 Variational Solutions for Evolutive H-J
185(6)
7.8.1 A Direct Construction of GFQI
185(3)
7.8.2 An Alternative Road
188(3)
7.9 Critical Points of Morse Functions
191(6)
7.9.1 Morse Formula and Morse Inequalities
194(3)
8 Finite Exact Reductions
197(12)
8.1 Chaperon's Method of the Broken Geodesies
197(6)
8.1.1 The Generating Function of the t-Wave Front T [ 0, T]
202(1)
8.2 Amann-Conley-Zehnder Reduction
203(6)
9 Other Instances: Generalized Elasticity
209(8)
9.1 Classical Hyperelasticity
209(8)
9.1.1 Generalized Hyperelastic Materials
210(2)
9.1.2 Other Tools in Algebraic Topology
212(1)
9.1.3 The Maslov Index for Generalized Hyperelastic Materials
213(4)
References 217