Muutke küpsiste eelistusi

Elements of Electromagnetics 6th Revised edition [Pehme köide]

(Prairie View State University)
  • Pehme köide
  • Hind: 227,95 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Elements of Electromagnetics, Fifth Edition, uses a vectors-first approach to explain electrostatics, magnetostatics, fields, waves, and applications like transmission lines, waveguides, and antennas. The book also provides a balanced presentation of time-varying and static fields, preparing students for employment in today's industrial and manufacturing sectors. The new edition includes new Application Notes detailing real-world connections, coverage of wave polarization states, a math pre-test for professors to assess students' mathematical skills, and new and updated problems.

Arvustused

Brief Table of Contents vi
Preface xiii
A Note to the Student xvi
Math Assessment 1(2)
PART 1 VECTOR ANALYSIS
1 Vector Algebra
3(26)
1.1 Introduction
3(1)
1.2 A Preview of the Book
4(1)
1.3 Scalars and Vectors
4(1)
1.4 Unit Vector
5(1)
1.5 Vector Addition and Subtraction
6(1)
1.6 Position and Distance Vectors
7(4)
1.7 Vector Multiplication
11(5)
1.8 Components of a Vector
16(7)
Summary
23(1)
Review Questions
23(2)
Problems
25(4)
2 Coordinate Systems and Transformation
29(28)
2.1 Introduction
29(1)
2.2 Cartesian Coordinates (x, y, z)
30(1)
2.3 Circular Cylindrical Coordinates (ρ, φ, z)
30(3)
2.4 Spherical Coordinates (r, θ, φ)
33(9)
2.5 Constant-Coordinate Surfaces
42(7)
Summary
49(1)
Review Questions
50(2)
Problems
52(5)
3 Vector Calculus
57(52)
3.1 Introduction
57(1)
3.2 Differential Length, Area, and Volume
57(7)
3.3 Line, Surface, and Volume Integrals
64(3)
3.4 Del Operator
67(2)
3.5 Gradient of a Scalar
69(4)
3.6 Divergence of a Vector and Divergence Theorem
73(7)
3.7 Curl of a Vector and Stokes's Theorem
80(8)
3.8 Laplacian of a Scalar
88(2)
3.9 Classification of Vector Fields
90(5)
Summary
95(1)
Review Questions
96(2)
Problems
98(11)
PART 2 ELECTROSTATICS
4 Electrostatic Fields
109(66)
4.1 Introduction
109(1)
4.2 Coulomb's Law and Field Intensity
110(7)
4.3 Electric Fields Due to Continuous Charge Distributions
117(11)
4.4 Electric Flux Density
128(2)
4.5 Gauss's Law---Maxwell's Equation
130(2)
4.6 Applications of Gauss's Law
132(7)
4.7 Electric Potential
139(6)
4.8 Relationship between E and V---Maxwell's Equation
145(3)
4.9 An Electric Dipole and Flux Lines
148(4)
4.10 Energy Density in Electrostatic Fields
152(5)
4.11 Application Note---Electrostatic Discharge
157(5)
Summary
162(3)
Review Questions
165(1)
Problems
166(9)
5 Electric Fields in Material Space
175(44)
5.1 Introduction
175(1)
5.2 Properties of Materials
175(1)
5.3 Convection and Conduction Currents
176(3)
5.4 Conductors
179(6)
5.5 Polarization in Dielectrics
185(3)
5.6 Dielectric Constant and Strength
188(1)
5.7 Linear, Isotropic, and Homogeneous Dielectrics
189(5)
5.8 Continuity Equation and Relaxation Time
194(2)
5.9 Boundary Conditions
196(9)
5.10 Application Note---Materials with High Dielectric Constant
205(1)
5.11 Application Note---Graphene
206(4)
Summary
210(1)
Review Questions
211(2)
Problems
213(6)
6 Electrostatic Boundary-Value Problems
219(68)
6.1 Introduction
219(1)
6.2 Poisson's and Laplace's Equations
219(2)
6.3 Uniqueness Theorem
221(1)
6.4 General Procedures for Solving Poisson's or Laplace's Equation
222(21)
6.5 Resistance and Capacitance
243(17)
6.6 Method of Images
260(6)
6.7 Application Note---Capacitance of Microstrip Lines
266(3)
6.8 Application Note---RF MEMS
269(3)
Summary
272(1)
Review Questions
273(1)
Problems
274(13)
PART 3 MAGNETOSTATICS
7 Magnetostatic Fields
287(50)
7.1 Introduction
287(1)
7.2 Biot--Savart's Law
288(11)
7.3 Ampere's Circuit Law---Maxwell's Equation
299(1)
7.4 Applications of Ampere's Law
299(8)
7.5 Magnetic Flux Density---Maxwell's Equation
307(2)
7.6 Maxwell's Equations for Static Fields
309(1)
7.7 Magnetic Scalar and Vector Potentials
310(6)
7.8 Derivation of Biot--Savart's Law and Ampere's Law
316(2)
7.9 Application Note---Lightning
318(1)
7.10 Application Note---Polywells
319(4)
Summary
323(2)
Review Questions
325(3)
Problems
328(9)
8 Magnetic Forces, Materials, and Devices
337(70)
8.1 Introduction
337(1)
8.2 Forces Due to Magnetic Fields
337(12)
8.3 Magnetic Torque and Moment
349(2)
8.4 A Magnetic Dipole
351(5)
8.5 Magnetization in Materials
356(4)
8.6 Classification of Materials
360(4)
8.7 Magnetic Boundary Conditions
364(5)
8.8 Inductors and Inductances
369(3)
8.9 Magnetic Energy
372(8)
8.10 Magnetic Circuits
380(2)
8.11 Force on Magnetic Materials
382(5)
8.12 Application Note---Magnetic Levitation
387(2)
8.13 Application Note---Hall Effect
389(3)
Summary
392(2)
Review Questions
394(2)
Problems
396(11)
PART 4 WAVES AND APPLICATIONS
9 Maxwell's Equations
407(48)
9.1 Introduction
407(1)
9.2 Faraday's Law
408(2)
9.3 Transformer and Motional Electromotive Forces
410(9)
9.4 Displacement Current
419(3)
9.5 Maxwell's Equations in Final Forms
422(3)
9.6 Time-Varying Potentials
425(2)
9.7 Time-Harmonic Fields
427(13)
9.8 Application Note---Memristor
440(1)
9.9 Application Note---Optical Nanocircuits
441(3)
Summary
444(1)
Review Questions
445(2)
Problems
447(8)
10 Electromagnetic Wave Propagation
455(80)
10.1 Introduction
455(1)
10.2 Waves in General
456(6)
10.3 Wave Propagation in Lossy Dielectrics
462(7)
10.4 Plane Waves in Lossless Dielectrics
469(1)
10.5 Plane Waves in Free Space
469(2)
10.6 Plane Waves in Good Conductors
471(9)
10.7 Wave Polarization
480(4)
10.8 Power and the Poynting Vector
484(4)
10.9 Reflection of a Plane Wave at Normal Incidence
488(11)
10.10 Reflection of a Plane Wave at Oblique Incidence
499(12)
10.11 Application Note---Microwaves
511(5)
10.12 Application Note---60 GHz Technology
516(3)
Summary
519(1)
Review Questions
520(2)
Problems
522(13)
11 Transmission Lines
535(78)
11.1 Introduction
535(1)
11.2 Transmission Line Parameters
536(3)
11.3 Transmission Line Equations
539(7)
11.4 Input Impedance, Standing Wave Ratio, and Power
546(8)
11.5 The Smith Chart
554(13)
11.6 Some Applications of Transmission Lines
567(7)
11.7 Transients on Transmission Lines
574(12)
11.8 Application Note---Microstrip Lines and Characterization of Data Cables
586(8)
11.9 Application Note---Metamaterials
594(1)
11.10 Application Note---Microwave Imaging
595(3)
Summary
598(2)
Review Questions
600(2)
Problems
602(11)
12 Waveguides
613(58)
12.1 Introduction
613(1)
12.2 Rectangular Waveguides
614(4)
12.3 Transverse Magnetic (TM) Modes
618(5)
12.4 Transverse Electric (TE) Modes
623(11)
12.5 Wave Propagation in the Guide
634(2)
12.6 Power Transmission and Attenuation
636(4)
12.7 Waveguide Current and Mode Excitation
640(6)
12.8 Waveguide Resonators
646(6)
12.9 Application Note---Optical Fiber
652(6)
12.10 Application Note---Cloaking and Invisibility
658(2)
Summary
660(2)
Review Questions
662(1)
Problems
663(8)
13 Antennas
671(62)
13.1 Introduction
671(2)
13.2 Hertzian Dipole
673(4)
13.3 Half-Wave Dipole Antenna
677(4)
13.4 Quarter-Wave Monopole Antenna
681(1)
13.5 Small-Loop Antenna
682(5)
13.6 Antenna Characteristics
687(8)
13.7 Antenna Arrays
695(10)
13.8 Effective Area and the Friis Equation
705(3)
13.9 The Radar Equation
708(4)
13.10 Application Note---Electromagnetic Interference and Compatibility
712(5)
13.11 Application Note---Textile Antennas and Sensors
717(2)
13.12 Application Note---RFID
719(3)
Summary
722(1)
Review Questions
723(1)
Problems
724(9)
14 Numerical Methods
733(82)
14.1 Introduction
733(1)
14.2 Field Plotting
734(8)
14.3 The Finite Difference Method
742(13)
14.4 The Moment Method
755(12)
14.5 The Finite Element Method
767(19)
14.6 Application Note---Microstrip Lines
786(8)
14.7 Application Note---Commercial EM Software---FEKO
794(2)
14.8 Application Note---Commercial EM Software---COMSOL Multiphysics
796(1)
14.9 Application Note---Commercial EM Software---CST Microwave Studio
797(3)
Summary
800(1)
Review Questions
800(2)
Problems
802(13)
Appendix A Mathematical Formulas 815(9)
Appendix B Material Constants 824(2)
Appendix C MATLAB 826(13)
Appendix D The Complete Smith Chart 839(1)
Appendix E Answers to Selected Problems 840(27)
Index 867
Matthew Sadiku is Professor of Electrical Engineering at Prairie View A&M University in Prairie View, Texas. He received his Ph.D. in Electrical Engineering from Tennessee Teh University and M.Sc. from Florida Atlantic University. Professor Sadiku is an active consultant for IBM. His teaching at Prarie View is varied, but it includes freshman-level courses in circuit design as well as higher-level courses in numerical methods and electromagnetics.