Muutke küpsiste eelistusi

Elements of Power Electronics 2nd edition [Kõva köide]

  • Formaat: Hardback, 816 pages, kaal: 1465 g
  • Ilmumisaeg: 30-Dec-2014
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0199388415
  • ISBN-13: 9780199388417
Teised raamatud teemal:
  • Formaat: Hardback, 816 pages, kaal: 1465 g
  • Ilmumisaeg: 30-Dec-2014
  • Kirjastus: Oxford University Press Inc
  • ISBN-10: 0199388415
  • ISBN-13: 9780199388417
Teised raamatud teemal:
Building on the tradition of its classic first edition, the long-awaited second edition ofElements of Power Electronics provides comprehensive coverage of the subject at a level suitable for undergraduate engineering students, students in advanced degree programs, and novices in the field. It establishes a fundamental engineering basis for power electronics analysis, design, and implementation, offering broad and in-depth coverage of basic material.Streamlined throughout to reflect new innovations in technology, the second edition also features updates on renewable and alternativeenergy.

Elements of Power Electronics features a unifying framework that includes the physical implications of circuit laws, switching circuit analysis, and the basis for converter operation and control. It discusses dc-dc, ac-dc, dc-ac, and ac-ac conversion tasks and principles of resonant converters and discontinuous converters. The text also addresses magnetic device design, thermal management and drivers for power semiconductors, control system aspects of converters, and both small-signal and geometric controls.

Models for real devices and components-including capacitors, inductors, wire connections, and power semiconductors-are developed in depth, while newly expanded examples show students how to use tools like Mathcad, Matlab, and Mathematica to aid in the analysis and design of conversion circuits.

Features:
*More than 160 examples and 350 chapter problems support the presented concepts
*An extensive Companion Website includes additional problems, laboratory materials, selected solutions for students, computer-based examples, and analysis tools for Mathcad, Matlab, and Mathematica

Arvustused

"Elements of Power Elements is a classic text, with modern examples that upgrade its relevance. It is an excellent first book on the subject, but also a reference that I use time and time again."--Robert Balog, Texas A&M University "This is an essential textbook by a world-class author. Its greatest strength is that it does not compromise on any of the important technical breadth and depth aspects. The revision is timely and enhances some important materials including applications and examples."--Martin Ordonez, University of British Columbia "This book is the result of years of dedication and hard work by a superb educator. I commend him for his tenacity and attention to detail."--R. Ramakumar, Oklahoma State University

Preface xvii
Nomenclature xxi
Part I: Principles
Chapter 1 Power Electronics and the Energy Revolution
2(46)
1.1 The Energy Basis of Electrical Engineering
3(2)
1.2 What Is Power Electronics?
5(2)
1.3 The Need for Electrical Conversion
7(1)
1.4 History
8(11)
1.4.1 Rectifiers and the Diode
8(1)
1.4.2 Inverters and Power Transistors
9(2)
1.4.3 Motor Drive Applications
11(1)
1.4.4 Power Supplies and dc—dc Conversion
12(3)
1.4.5 Alternative Energy Processing
15(1)
1.4.6 The Energy Future: Power Electronics as a Revolution
16(2)
1.4.7 Summary and Future Developments
18(1)
1.5 Goals and Methods of Electrical Conversion
19(3)
1.5.1 The Basic Objectives
19(1)
1.5.2 The Efficiency Objective—The Switch
20(1)
1.5.3 The Reliability Objective—Simplicity and Integration
21(1)
1.5.4 Important Variables and Notation
21(1)
1.6 Energy Analysis of Switching Power Converters
22(10)
1.6.1 Conservation of Energy over Time
23(2)
1.6.2 Energy Flows and Action in dc—dc Converters
25(4)
1.6.3 Energy Flows and Action in Rectifiers
29(3)
1.7 Power Electronics Applications: A Universal Energy Enabler
32(9)
1.7.1 Solar Energy Architectures
32(4)
1.7.2 Wind Energy Architectures
36(2)
1.7.3 Tide and Wave Architectures
38(1)
1.7.4 Electric Transportation Architectures
39(2)
1.8 Recap
41(1)
Problems
42(3)
References
45(3)
Chapter 2 Switching Conversion and Analysis
48(46)
2.1 Introduction
49(1)
2.2 Combining Conventional Circuits and Switches
49(7)
2.2.1 Organizing a Converter to Focus on Switches
49(3)
2.2.2 Configuration-based Analysis
52(1)
2.2.3 The Switch Matrix as a Design Tool
53(3)
2.3 The Reality of Kirchhoff's Laws
56(7)
2.3.1 The Challenge of Switching Violations
56(2)
2.3.2 Interconnection of Voltage and Current Sources
58(1)
2.3.3 Short-Term and Long-Term Violations
59(1)
2.3.4 Interpretation of Average Inductor Voltage and Capacitor Current
60(1)
2.3.5 Source Conversion
61(2)
2.4 Switching Functions and Applications
63(5)
2.5 Overview of Switching Devices
68(7)
2.5.1 Real Switches
68(1)
2.5.2 The Restricted Switch
69(2)
2.5.3 Typical Devices and Their Functions
71(4)
2.6 Methods for Diode Switch Circuits
75(8)
2.7 Control of Converters Based on Switch Action
83(1)
2.8 Equivalent Source Methods
84(2)
2.9 Simulation
86(1)
2.10 Summary and Recap
87(1)
Problems
88(4)
References
92(2)
Part II: Converters And Applications
Chapter 3 dc-dc Converters
94(78)
3.1 The Importance of dc—dc Conversion
95(1)
3.2 Why Not Voltage Dividers?
95(2)
3.3 Linear Regulators
97(3)
3.3.1 Regulator Circuits
97(2)
3.3.2 Regulation Measures
99(1)
3.4 Direct dc—dc Converters and Filters
100(21)
3.4.1 The Buck Converter
100(5)
3.4.2 The Boost Converter
105(2)
3.4.3 Power Filter Design
107(5)
3.4.4 Discontinuous Modes and Critical Inductance
112(9)
3.5 Indirect dc—dc Converters
121(18)
3.5.1 The Buck-Boost Converter
121(3)
3.5.2 The Boost-Buck Converter
124(1)
3.5.3 The Flyback Converter
125(4)
3.5.4 SEPIC, Zeta, and Other Indirect Converters
129(2)
3.5.5 Power Filters in Indirect Converters
131(2)
3.5.6 Discontinuous Modes in Indirect Converters
133(6)
3.6 Forward Converters and Isolation
139(8)
3.6.1 Basic Transformer Operation
139(2)
3.6.2 General Considerations in Forward Converters
141(1)
3.6.3 Catch-Winding Forward Converter
142(1)
3.6.4 Forward Converters with ac Links
143(3)
3.6.5 Boost-Derived (Current-Fed) Forward Converters
146(1)
3.7 Bidirectional Converters
147(2)
3.8 dc—dc Converter Design Issues and Examples
149(11)
3.8.1 The High-Side Switch Challenge
149(1)
3.8.2 Limitations of Resistive and Forward Drops
150(2)
3.8.3 Regulation
152(3)
3.8.4 Solar Interface Converter
155(2)
3.8.5 Electric Truck Interface Converter
157(1)
3.8.6 Telecommunications Power Supply
158(2)
3.9 Application Discussion
160(1)
3.10 Recap
161(3)
Problems
164(5)
References
169(3)
Chapter 4 Rectifiers and Switched Capacitor Circuits
172(74)
4.1 Introduction
173(1)
4.2 Rectifier Overview
173(2)
4.3 The Classical Rectifier—Operation and Analysis
175(7)
4.4 Phase-Controlled Rectifiers
182(25)
4.4.1 The Uncontrolled Case
182(4)
4.4.2 Controlled Bridge and Midpoint Rectifiers
186(9)
4.4.3 The Polyphase Bridge Rectifier
195(5)
4.4.4 Power Filtering in Rectifiers
200(2)
4.4.5 Discontinuous Mode Operation
202(5)
4.5 Active Rectifiers
207(11)
4.5.1 Boost Rectifier
207(6)
4.5.2 Discontinuous Mode Flyback and Related Converters as Active Rectifiers
213(2)
4.5.3 Polyphase Active Rectifiers
215(3)
4.6 Switched-Capacitor Converters
218(5)
4.6.1 Charge Exchange between Capacitors
218(1)
4.6.2 Capacitors and Switch Matrices
219(2)
4.6.3 Doublers and Voltage Multipliers
221(2)
4.7 Voltage and Current Doublers
223(1)
4.8 Converter Design Examples
224(9)
4.8.1 Wind Power Rectifier
224(2)
4.8.2 Power System Control and High-Voltage dc
226(2)
4.8.3 Solid-State Lighting
228(2)
4.8.4 Vehicle Active Battery Charger
230(3)
4.9 Application Discussion
233(1)
4.10 Recap
234(4)
Problems
238(5)
References
243(3)
Chapter 5 Inverters
246(46)
5.1 Introduction
247(1)
5.2 Inverter Considerations
247(3)
5.3 Voltage-Sourced Inverters and Control
250(5)
5.4 Pulse-Width Modulation
255(11)
5.4.1 Introduction
255(3)
5.4.2 Creating Pulse-Width Modulation Waveforms
258(3)
5.4.3 Drawbacks of Pulse-Width Modulation
261(1)
5.4.4 Multi-level Pulse-Width Modulation
262(3)
5.4.5 Inverter Input Current under Pulse-Width Modulation
265(1)
5.5 Three-Phase Inverters and Space Vector Modulation
266(7)
5.6 Current-Sourced Inverters
273(2)
5.7 Filters and Inverters
275(2)
5.8 Inverter Design Examples
277(7)
5.8.1 Solar Power Interface
277(1)
5.8.2 Uninterruptible Power Supply
278(2)
5.8.3 Electric Vehicle High-Performance Drive
280(4)
5.9 Application Discussion
284(1)
5.10 Recap
284(2)
Problems
286(3)
References
289(3)
Part III: Real Components And Their Effects
Chapter 6 Real Sources and Loads
292(48)
6.1 Introduction
293(1)
6.2 Real Loads
293(6)
6.2.1 Quasi-Steady Loads
294(2)
6.2.2 Transient Loads
296(2)
6.2.3 Coping with Load Variation—Dynamic Regulation
298(1)
6.3 Wire Inductance
299(2)
6.4 Critical Values and Examples
301(4)
6.5 Interfaces for Real Sources
305(9)
6.5.1 Impedance Behavior of Sources
305(1)
6.5.2 Interfaces for dc Sources
306(3)
6.5.3 Interfaces for ac Sources
309(5)
6.6 Source Characteristics of Batteries
314(6)
6.6.1 Lead-acid Cells
316(1)
6.6.2 Nickel Batteries
317(1)
6.6.3 Lithium-ion Batteries
318(1)
6.6.4 Basis for Comparison
319(1)
6.7 Source Characteristics of Fuel Cells and Solar Cells
320(4)
6.7.1 Fuel Cells
320(2)
6.7.2 Solar Cells
322(2)
6.8 Design Examples
324(7)
6.8.1 Wind Farm Interconnection Problems
324(1)
6.8.2 Bypass Capacitor Benefits
325(1)
6.8.3 Interface for a Boost Power Factor Correction Active Rectifier
326(2)
6.8.4 Lithium-ion Battery Charger for a Small Portable Device
328(3)
6.9 Application Discussion
331(1)
6.10 Recap
332(2)
Problems
334(3)
References
337(3)
Chapter 7 Capacitors and Resistors
340(38)
7.1 Introduction
341(1)
7.2 Capacitors—Types and Equivalent Circuits
341(12)
7.2.1 Major Types
341(3)
7.2.2 Equivalent Circuit
344(2)
7.2.3 Impedance Behavior
346(2)
7.2.4 Simple Dielectric Types and Materials
348(1)
7.2.5 Electrolytics
349(3)
7.2.6 Double-Layer Capacitors
352(1)
7.3 Effects of Equivalent Series Resistance
353(3)
7.4 Effects of Equivalent Series Inductance
356(2)
7.5 Wire Resistance
358(6)
7.5.1 Wire Sizing
358(3)
7.5.2 Traces and Busbar
361(2)
7.5.3 Temperature and Frequency Effects
363(1)
7.6 Resistors
364(2)
7.7 Design Examples
366(4)
7.7.1 Single-phase Inverter Energy
366(1)
7.7.2 Paralleling Capacitors in a Low-Voltage dc—dc Converter
367(3)
7.7.3 Resistance Management in a Heat Lamp Application
370(1)
7.8 Application Discussion
370(2)
7.9 Recap
372(1)
Problems
373(3)
References
376(2)
Chapter 8 Concepts of Magnetics for Power Electronics
378(46)
8.1 Introduction
379(1)
8.2 Maxwell's Equations with Magnetic Approximations
379(1)
8.3 Materials and Properties
380(2)
8.4 Magnetic Circuits
382(9)
8.4.1 The Circuit Analogy
382(1)
8.4.2 Inductance
382(6)
8.4.3 Ideal and Real Transformers
388(3)
8.5 The Hysteresis Loop and Losses
391(4)
8.6 Saturation as a Design Constraint
395(5)
8.6.1 Saturation Limits
395(3)
8.6.2 General Design Considerations
398(2)
8.7 Design Examples
400(14)
8.7.1 Core Materials and Geometries
400(4)
8.7.2 Additional Discussion of Transformers
404(1)
8.7.3 Hybrid Automobile Boost Inductor
405(1)
8.7.4 Building-integrated Solar Energy Converter
406(5)
8.7.5 Isolated Converter for Small Satellite Application
411(3)
8.8 Application Discussion
414(3)
8.9 Recap
417(3)
Problems
420(3)
References
423(1)
Chapter 9 Power Semiconductors in Converters
424(72)
9.1 Introduction
425(1)
9.2 Switching Device States
425(2)
9.3 Static Models
427(6)
9.4 Switch Energy Losses and Examples
433(10)
9.4.1 General Analysis of Losses
433(2)
9.4.2 Losses during Commutation
435(4)
9.4.3 Examples
439(4)
9.5 Simple Heat Transfer Models for Power Semiconductors
443(5)
9.6 The P-N Junction as a Power Device
448(2)
9.7 P-N Junction Diodes and Alternatives
450(2)
9.8 The Thyristor Family
452(4)
9.9 Field-Effect Transistors
456(4)
9.10 Insulated-Gate Bipolar Transistors
460(4)
9.11 Integrated Gate-Commutated Thyristors and Combination Devices
464(1)
9.12 Impact of Compound and Wide Bandgap Semiconductors
464(2)
9.13 Snubbers
466(9)
9.13.1 Introduction
466(1)
9.13.2 Lossy Turn-off Snubbers
467(4)
9.13.3 Lossy Turn-on Snubbers
471(3)
9.13.4 Combined and Lossless Snubbers
474(1)
9.14 Design Examples
475(10)
9.14.1 Boost Converter for Disk Drive
475(6)
9.14.2 Loss Estimate for Electric Vehicle Inverter
481(3)
9.14.3 Extreme Performance Devices
484(1)
9.15 Application Discussion
485(2)
9.16 Recap
487(4)
Problems
491(3)
References
494(2)
Chapter 10 Interfacing with Power Semiconductors
496(36)
10.1 Introduction
497(1)
10.2 Gate Drives
497(10)
10.2.1 Overview
497(1)
10.2.2 Voltage-Controlled Gates
498(4)
10.2.3 Pulsed-Current Gates
502(4)
10.2.4 Other Thyristors
506(1)
10.3 Isolation and High-Side Switching
507(4)
10.4 P-channel Applications and Shoot-through
511(2)
10.5 Sensors for Power Electronic Switches
513(8)
10.5.1 Resistive Sensing
513(2)
10.5.2 Integrating Sensing Functions with the Gate Drive
515(2)
10.5.3 Noncontact Sensing
517(4)
10.6 Design Examples
521(3)
10.6.1 Gate Consideration on dc—dc-Based Battery Charger
521(2)
10.6.2 Gate Drive Impedance Requirements
523(1)
10.6.3 Hall Sensor Accuracy Interpretation
523(1)
10.7 Application Discussion
524(1)
10.8 Recap
524(2)
Problems
526(3)
References
529(3)
Part IV: Control Aspects
Chapter 11 Overview of Feedback Control for Converters
532(48)
11.1 Introduction
533(1)
11.2 The Regulation and Control Problem
533(2)
11.2.1 Introduction
533(1)
11.2.2 Defining the Regulation Problem
533(1)
11.2.3 The Control Problem
534(1)
11.3 Review of Feedback Control Principles
535(11)
11.3.1 Open-Loop and Closed-Loop Control
535(2)
11.3.2 Block Diagrams
537(2)
11.3.3 System Gain and Laplace Transforms
539(2)
11.3.4 Transient Response and Frequency Domain
541(1)
11.3.5 Stability
542(4)
11.4 Converter Models for Feedback
546(5)
11.4.1 Basic Converter Dynamics
546(1)
11.4.2 Fast-Switching Models
547(1)
11.4.3 Piecewise-Linear Models
547(3)
11.4.4 Discrete Time Models
550(1)
11.5 Voltage-Mode and Current-Mode Controls for dc—dc Converters
551(10)
11.5.1 Voltage-Mode Control
551(4)
11.5.2 Current-Mode Control
555(3)
11.5.3 Large-Signal Issues in Voltage-Mode and Current-Mode Control
558(3)
11.6 Comparator-Based Controls for Rectifier Systems
561(3)
11.7 Proportional and Proportional-integral Control Applications
564(2)
11.8 Design Examples
566(5)
11.8.1 Voltage-Mode Control and Performance
566(1)
11.8.2 Feedforward Compensation
567(1)
11.8.3 Electric Vehicle Control Setup
568(3)
11.9 Application Discussion
571(1)
11.10 Recap
571(4)
Problems
575(3)
References
578(2)
Chapter 12 Control Modeling and Design
580(52)
12.1 Introduction
581(1)
12.2 Averaging Methods and Models
581(9)
12.2.1 Formulation of Averaged Models
581(7)
12.2.2 Averaged Circuit Models
588(2)
12.3 Small-Signal Analysis and Linearization
590(4)
12.3.1 The Need for Linear Models
590(1)
12.3.2 Obtaining Linear Models
590(1)
12.3.3 Generalizing the Process
591(3)
12.4 Control and Control Design Based on Linearization
594(19)
12.4.1 Transfer Functions
594(5)
12.4.2 Control Design—Introduction
599(5)
12.4.3 Compensation and Filtering
604(4)
12.4.4 Compensated Feedback Examples
608(5)
12.4.5 Challenges for Control Design
613(1)
12.5 Design Examples
613(10)
12.5.1 Boost Converter Control Example
613(5)
12.5.2 Buck Converter with Current-Mode Control
618(2)
12.5.3 Buck Converter with Voltage-Mode Control
620(3)
12.6 Application Discussion
623(2)
12.7 Recap
625(2)
Problems
627(2)
References
629(3)
Part V: Advanced Topics
Chapter 13 ac to ac Conversion
632(36)
13.1 Introduction
633(1)
13.2 ac Regulators and Integral Cycle Control
633(6)
13.2.1 Silicon-Conrolled Rectifier and Triac-Based ac Regulators
633(5)
13.2.2 Integral Cycle Control
638(1)
13.3 Frequency Matching Conditions
639(2)
13.4 Matrix Converters
641(7)
13.4.1 Slow-Switching Frequency Converters: The Choice fawitch =fin +fout
641(3)
13.4.2 Unrestricted Frequency Converters: The Choice fawitch =fin +fout
644(2)
13.4.3 Unifying the Direct Switching Methods: Linear Phase Modulation
646(2)
13.5 The Cycloconverter
648(3)
13.6 Pulse-Width Modulation ac—ac Conversion
651(2)
13.7 dc Link Converters
653(3)
13.8 ac Link Converters
656(1)
13.9 Design Examples
657(4)
13.9.1 Heater Control with Triac ac Regulator
657(1)
13.9.2 Aircraft Interface Converter
658(2)
13.9.3 Sizing a dc Link ac—ac Converter
660(1)
13.10 Application Discussion
661(1)
13.11 Recap
662(1)
Problems
663(3)
References
666(2)
Chapter 14 Resonance in Converters
668(44)
14.1 Introduction
669(1)
14.2 Review of Resonance
669(12)
14.2.1 Characteristic Equations
669(2)
14.2.2 Step Function Excitation
671(4)
14.2.3 Series Resonance
675(2)
14.2.4 Parallel Resonance
677(4)
14.3 Soft Switching Techniques—Introduction
681(3)
14.3.1 Soft Switching Principles
681(1)
14.3.2 Inverter Configurations
681(2)
14.3.3 Parallel capacitor as a dc-dc Soft Switching Element
683(1)
14.4 Soft switching in dc-dc Converters
684(12)
14.4.1 Description of Quasi-resonance
684(1)
14.4.2 Zero-Current Switching Transistor Action
685(6)
14.4.3 Zero-Voltage Switching Transistor Action
691(5)
14.5 Resonance Used for Control— Forward Converters
696(1)
14.6 Design Examples
697(5)
14.6.1 Limitations of Antiresonant Filters
697(2)
14.6.2 Creating an ac Link for a dc—dc Converter
699(1)
14.6.3 Resonant Boost Converter for Solar Application
699(3)
14.7 Application Discussion
702(1)
14.8 Recap
702(3)
Problems
705(5)
References
710(2)
Chapter 15 Hysteresis and Geometric Control for Power Converters
712
15.1 Introduction
713(1)
15.2 Hysteresis Control
713
13.4.2 Unrestricted Frequency Converters: The Choice f: ,.switch= fin+ font
644(2)
13.4.3 Unifying the Direct Switching Methods: Linear Phase Modulation
646(2)
13.5 The Cycloconverter
648(3)
13.6 Pulse-Width Modulation ac—ac Conversion
651(2)
13.7 dc Link Converters
653(3)
13.8 ac Link Converters
656(1)
13.9 Design Examples
657(4)
13.9.1 Heater Control with Triac ac Regulator
657(1)
13.9.2 Aircraft Interface Converter
658(2)
13.9.3 Sizing a dc Link ac—ac Converter
660(1)
13.10 Application Discussion
661(1)
13.11 Recap
662(1)
Problems
663(3)
References
666(2)
Chapter 14 Resonance in Converters
668(44)
14.1 Introduction
669(1)
14.2 Review of Resonance
669(12)
14.2.1 Characteristic Equations
669(2)
14.2.2 Step Function Excitation
671(4)
14.2.3 Series Resonance
675(2)
14.2.4 Parallel Resonance
677(4)
14.3 Soft Switching Techniques—Introduction
681(3)
14.3.1 Soft Switching Principles
681(1)
14.3.2 Inverter Configurations
681(2)
14.3.3 Parallel capacitor as a dc-dc Soft Switching Element
683(1)
14.4 Soft switching in dc-dc Converters
684(12)
14.4.1 Description of Quasi-resonance
684(1)
14.4.2 Zero-Current Switching Transistor Action
685(6)
14.4.3 Zero-Voltage Switching Transistor Action
691(5)
14.5 Resonance Used for Control— Forward Converters
696(1)
14.6 Design Examples
697(5)
14.6.1 Limitations of Antiresonant Filters
697(2)
14.6.2 Creating an ac Link for a dc—dc Converter
699(1)
14.6.3 Resonant Boost Converter for Solar Application
699(3)
14.7 Application Discussion
702(1)
14.8 Recap
702(3)
Problems
705(5)
References
710(2)
Chapter 15 Hysteresis and Geometric Control for Power Converters
712(39)
15.1 Introduction
713(1)
15.2 Hysteresis Control
713(14)
15.2.1 Definition and Basic Behavior
713(1)
15.2.2 Hysteresis Control in dc—dc Converters
714(7)
15.2.3 Hysteresis Power Factor Correction Control
721(4)
15.2.4 Inverters
725(1)
15.2.5 Design Approaches
726(1)
15.3 Switching Boundary Control
727(7)
15.3.1 Behavior Near a Switching Boundary
727(2)
15.3.2 Possible Behavior
729(1)
15.3.3 Choosing a Switching Boundary
730(4)
15.4 Frequency Control in Geometric Methods
734(2)
15.5 Design Examples
736(6)
15.5.1 Designing Hysteresis Controllers
736(1)
15.5.2 Switching Boundary Control Combination for Battery Charging Management
737(3)
15.5.3 Boost Converter with Switching Boundary Control
740(2)
15.6 Application Discussion
742(1)
15.7 Recap
742(2)
Problems
744(3)
References
747
Appendices
A Some Useful Trigonometric Identities
751(2)
B Unit Systems
753(4)
C Fourier Series
757(8)
D Three-Phase Circuits
765(8)
Index 773
Philip T. Krein holds the Grainger Endowed Chair in Electric Machinery and Electromechanics as Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He is a past president of the IEEE Power Electronics Society, and holds twenty-eight U.S. patents, with additional patents pending.