Muutke küpsiste eelistusi

Elliptic Curve Public Key Cryptosystems 1993 ed. [Kõva köide]

Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
Teised raamatud teemal:
A textbook for an advanced course, and a reference for researchers interested in issues of data security. Explores how elliptic curves can be the basis of cryptosystems that potentially provide as much security as the existing public key schemes, only with shorter key lengths. Annotation copyright Book News, Inc. Portland, Or.

Elliptic curves have been intensively studied in algebraic geometry and number theory. In recent years they have been used in devising efficient algorithms for factoring integers and primality proving, and in the construction of public key cryptosystems.
Elliptic Curve Public Key Cryptosystems provides an up-to-date and self-contained treatment of elliptic curve-based public key cryptology. Elliptic curve cryptosystems potentially provide equivalent security to the existing public key schemes, but with shorter key lengths. Having short key lengths means smaller bandwidth and memory requirements and can be a crucial factor in some applications, for example the design of smart card systems. The book examines various issues which arise in the secure and efficient implementation of elliptic curve systems.
Elliptic Curve Public Key Cryptosystems is a valuable reference resource for researchers in academia, government and industry who are concerned with issues of data security. Because of the comprehensive treatment, the book is also suitable for use as a text for advanced courses on the subject.

Muu info

Springer Book Archives
1 Introduction to Public Key Cryptography.- 1.1 Private Key
Cryptography.- 1.2 Diffie-Hellman Key Exchange.- 1.3 Public Key
Cryptography.- 1.4 Trapdoor One-Way Functions Based on Groups.- 1.5 NIST
Digital Signature Standard.- 1.6 Elliptic Curve Cryptosystems.- 1.7 Notes.- 2
Introduction to Elliptic Curves.- 2.1 Definitions.- 2.2 Group Law.- 2.3 The
Discriminant and j-Invariant.- 2.4 Curves over K, char(K) # 2,3.- 2.5 Curves
over K, char(K) = 2.- 2.6 Group Structure.- 2.7 Divisor Theory.- 2.8 Elliptic
Curves over ?n.- 2.9 Notes.- 3 Isomorphism Classes of Elliptic Curves over
Finite Fields.- 3.1 Introduction.- 3.2 Isomorphism Classes of Curves over Fq,
char(Fq) 2, 3..- 3.3 Isomorphism Classes of Non-Supersingular Curves over
F2m.- 3.4 Isomorphism Classes of Supersingular Curves over F2m, m odd.- 3.5
Isomorphism Classes of Supersingular Curves over F2m, m even.- 3.6 Number of
Points.- 3.7 Notes.- 4 The Discrete Logarithm Problem.- 4.1 Algorithms.- 4.2
Reducing Some Logarithm Problems to Logarithms in a Finite Field.- 4.3
Notes.- 5 The Elliptic Curve Logarithm Problem.- 5.1 The Weil Pairing.- 5.2
Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field.- 5.3
Cryptographic Implications.- 5.4 Finding the Group Structure.- 5.5 Notes.- 6
Implementation of Elliptic Curve Cryptosystems.- 6.1 Field Arithmetic in
F2m.- 6.2 Selecting a Curve and Field K.- 6.3 Projective Coordinates.- 6.4
ElGamal Cryptosystem.- 6.5 Performance.- 6.6 Using Supersingular Curves.- 6.7
Elliptic Curve Cryptosystems over ?n.- 6.8 Implementations.- 6.9 Notes.- 7
Counting Points on Elliptic Curves Over F2m.- 7.1 Some Basics.- 7.2 Outline
of Schoofs Algorithm.- 7.3 Some Heuristics.- 7.4 Implementation and
Results.- 7.5 Recent Work.- 7.6 Notes.