Muutke küpsiste eelistusi

Energy Deposition for High-Speed Flow Control [Kõva köide]

(Rutgers University, New Jersey)
  • Formaat: Hardback, 462 pages, kõrgus x laius x paksus: 262x184x26 mm, kaal: 1100 g, 164 Halftones, black and white; 347 Line drawings, black and white
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 21-Feb-2019
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107123054
  • ISBN-13: 9781107123052
  • Formaat: Hardback, 462 pages, kõrgus x laius x paksus: 262x184x26 mm, kaal: 1100 g, 164 Halftones, black and white; 347 Line drawings, black and white
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 21-Feb-2019
  • Kirjastus: Cambridge University Press
  • ISBN-10: 1107123054
  • ISBN-13: 9781107123052
Presents a novel method for controlling high speed flows past aerodynamic shapes using energy deposition via direct current (DC), laser or microwave discharge. This research volume is perfect for those looking for a detailed description of these topics with examples of practical application in high-speed aerodynamics.

Written by a leading expert in the field, this book presents a novel method for controlling high-speed flows past aerodynamic shapes using energy deposition via direct current (DC), laser or microwave discharge, and describes selected applications in supersonic and hypersonic flows. Emphasizing a deductive approach, the fundamental physical principles provided give an understanding of the simplified mathematical models derived therefrom. These features, along with an extensive set of 55 simulations, make the book an invaluable reference that will be of interest to researchers and graduate students working in aerospace engineering and in plasma physics.

Muu info

Describes energy deposition using direct current (DC), microwave and laser discharge for flow control at high speeds.
Preface xi
1 Introduction
1(5)
1.1 Background
1(3)
1.2 Overview of the Book
4(2)
2 Fundamental Equations
6(22)
2.1 Overview
6(1)
2.2 Conservation of Mass
7(1)
2.3 Conservation of Momentum
8(1)
2.4 Conservation of Energy
9(1)
2.5 Second Law of Thermodynamics
10(2)
2.6 Maxwell's Equations
12(2)
2.7 Schrodinger's Equation
14(3)
2.8 Liouville's Equation and Theorem
17(11)
Problems
23(5)
3 Statistical Mechanics and Continuum Physics
28(39)
3.1 Overview
28(1)
3.2 An Equilibrium Probability Density Function
28(4)
3.3 Bogoliubov-Born-Green-Kirkwood-Yvon Equations
32(5)
3.4 Boltzmann Equation
37(10)
3.5 Collision Cross-Sections
47(1)
3.6 Boltzmann's H-Theorem
48(2)
3.7 Maxwell-Boltzmann Distribution
50(2)
3.8 Boltzmann's Equations for a Gas Mixture
52(3)
3.9 Equations of Continuum Gas Dynamics
55(5)
3.10 Chapman-Enskog Method
60(7)
Problems
64(3)
4 Dynamics and Kinetics of Charged Particles
67(19)
4.1 Introduction
67(1)
4.2 Debye Length
67(2)
4.3 Sheath
69(2)
4.4 Isolated Ions
71(2)
4.5 Collision Frequency
73(3)
4.6 Mean Free Path
76(1)
4.7 Elastic Collisions
76(1)
4.8 Ionic Drift Velocity and Mobility in DC Electric Field
77(1)
4.9 Current and Conductivity in DC Electric Field
78(1)
4.10 Diffusion
79(2)
4.11 Ambipolar Diffusion
81(1)
4.12 Thermochemical Reactions
82(4)
Problems
83(3)
5 DC Discharge
86(47)
5.1 Introduction
86(2)
5.2 Townsend Regime
88(10)
5.3 Corona Regime
98(3)
5.4 Glow Discharge
101(14)
5.5 Streamer Discharge
115(4)
5.6 Spark Discharge
119(2)
5.7 Arc Discharge
121(12)
Problems
129(4)
6 Microwave Discharge
133(66)
6.1 Introduction
133(1)
6.2 Microwave Theory
134(23)
6.3 Microwave Waveguides
157(8)
6.4 Microwave Discharge in Free Space
165(5)
6.5 Microwave Breakdown
170(12)
6.6 Simulations of Microwave Discharge
182(12)
6.7 Thermochemistry of Microwave Discharge
194(5)
Problems
194(5)
7 Laser Discharge
199(44)
7.1 Introduction
199(2)
7.2 Laser Theory
201(2)
7.3 Laser Discharge
203(11)
7.4 Post-Discharge Flow Structure
214(6)
7.5 Conditions for Breakdown in Air
220(5)
7.6 Models for Breakdown
225(1)
7.7 Fraction of Laser Energy Deposited in Air
226(3)
7.8 Simulation of Laser Discharge in Air
229(10)
7.9 Continuous Laser Discharge
239(4)
Problems
239(4)
8 Modeling Energy Deposition as an Ideal Gas
243(30)
8.1 Introduction
243(2)
8.2 Governing Equations
245(3)
8.3 Dimensionless Parameters
248(2)
8.4 One-Dimensional Steady Energy Deposition
250(4)
8.5 Linearized Analysis for Steady Flow
254(3)
8.6 Belokon et al. (1977)
257(3)
8.7 Krasnobaev and Syunyaev (1983)
260(3)
8.8 Krasnobaev (1984)
263(1)
8.9 Artem'ev et al. (1988)
264(1)
8.10 Vlasov et al. (1995)
265(2)
8.11 Georgievsky et al. (2010)
267(1)
8.12 Additional References
268(5)
Problems
268(5)
9 Flow Control in Aerodynamics
273(64)
9.1 Introduction
273(1)
9.2 Artem'ev et al. (1989)
273(2)
9.3 Myrabo and Raizer (1994)
275(4)
9.4 Tretyakov et al. (1996)
279(1)
9.5 Bracken et al. (2001a,b,c)
280(2)
9.6 Girgis et al. (2002)
282(2)
9.7 Johns Hopkins University Applied Physics Laboratory (2003-2013)
284(2)
9.8 Lashkov et al. (2004)
286(4)
9.9 Kandala and Candler (2004)
290(2)
9.10 Adelgren et al. (2005)
292(5)
9.11 Kremeyer et al. (2006)
297(2)
9.12 Zheltovodov et al. (2007)
299(5)
9.13 Gnemmi et al. (2008)
304(1)
9.14 Yan and Gaitonde (2008)
305(1)
9.15 Caruana et al. (2009) and Hardy et al. (2010)
306(1)
9.16 Georgievsky and Levin (2009)
307(2)
9.17 Knight et al. (2009)
309(3)
9.18 Kim et al. (2009)
312(1)
9.19 Narayanaswamy et al. (2010)
313(3)
9.20 Schiilein et al. (2010)
316(3)
9.21 Anderson and Knight (2011)
319(1)
9.22 Azarovaet al. (2011)
320(3)
9.23 Anderson and Knight (2012)
323(3)
9.24 Leonov et al. (2012)
326(1)
9.25 Golbabaei Asl et al. (2013)
327(2)
9.26 Golbabaei Asl and Knight (2014)
329(5)
9.27 Reedy et al. (2013)
334(1)
9.28 Webb and Samimy (2017)
335(1)
9.29 Pham et al. (2017)
335(1)
9.30 Additional References
336(1)
Appendix A Vector Analysis 337(2)
Appendix B Physical Constants 339(2)
Appendix C Microwave Frequency Bands 341(1)
Appendix D Microwave Waveguides and Components 342(27)
Appendix E Bessel's Equation 369(3)
Notes 372(50)
References 422(23)
Author Index 445(4)
Subject Index 449
Doyle D. Knight is Distinguished Professor of Aerospace and Mechanical Engineering at Rutgers University, New Jersey. His research interests include gas dynamics and design optimization. His research in gas dynamics includes shock wave boundary layer interaction, incipient separation on pitching airfoils, turbulence model development, high speed inlet unstart and effects of unsteady energy deposition in supersonic flows. His research activity in design optimization focuses on the application of computational fluid dynamics to the automated optimal design of high speed air vehicles. He is the author of Elements of Numerical Methods for Compressible Flows (Cambridge, 2006).