Muutke küpsiste eelistusi

Energy-Efficient Area Coverage for Intruder Detection in Sensor Networks [Pehme köide]

  • Formaat: Paperback / softback, 97 pages, kõrgus x laius: 235x155 mm, kaal: 1963 g, 32 Illustrations, black and white; VIII, 97 p. 32 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 07-Mar-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319046470
  • ISBN-13: 9783319046471
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 97 pages, kõrgus x laius: 235x155 mm, kaal: 1963 g, 32 Illustrations, black and white; VIII, 97 p. 32 illus., 1 Paperback / softback
  • Sari: SpringerBriefs in Computer Science
  • Ilmumisaeg: 07-Mar-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319046470
  • ISBN-13: 9783319046471
This Springer Brief presents recent research results on area coverage for intruder detection from an energy-efficient perspective. These results cover a variety of topics, including environmental surveillance and security monitoring. The authors also provide the background and range of applications for area coverage and elaborate on system models such as the formal definition of area coverage and sensing models. Several chapters focus on energy-efficient intruder detection and intruder trapping under the well-known binary sensing model, along with intruder trapping under the probabilistic sensing model. The brief illustrates efficient algorithms rotate the duty of each sensor to prolong the network lifetime and ensure intruder trapping performance. The brief concludes with future directions of the field. Designed for researchers and professionals working with wireless sensor networks, the brief also provides a wide range of applications which are also valuable for advanced-level students interested in efficiency and networking.
1 Introduction to Area Coverage in Sensor Networks
1(10)
1.1 Background
1(1)
1.2 Basic Concepts
2(3)
1.2.1 Sensor Deployment
3(1)
1.2.2 Sensing Models
3(1)
1.2.3 Coverage Classification
4(1)
1.3 The State-of-the-Art Work on Area Coverage
5(6)
1.3.1 Deterministic Deployment
5(2)
1.3.2 Random Deployment
7(1)
References
8(3)
2 Energy-Efficient Capture of Stochastic Events in Sensor Networks
11(24)
2.1 Introduction
11(2)
2.2 Problem Setup and Performance Metrics
13(2)
2.3 Event Capture by Periodic Sensor
15(1)
2.4 Energy-Aware Optimization of Synchronous Periodic Schedule
16(2)
2.5 Optimization of Asynchronous Periodic Schedule
18(2)
2.6 General Regionally Synchronous Networks
20(4)
2.7 Coordinated Sleep Under Periodic Scheduling
24(3)
2.8 Numerical Results
27(6)
2.8.1 Illustration of Analytical Results
27(2)
2.8.2 Network Simulations
29(3)
2.8.3 Summary of Experiments
32(1)
2.9 Conclusions
33(2)
References
34(1)
3 Energy-Efficient Trap Coverage in Sensor Networks
35(34)
3.1 Introduction
35(2)
3.2 Preliminary and Problem Formulation
37(3)
3.2.1 Network Model
37(1)
3.2.2 Trap Coverage Model
38(1)
3.2.3 Minimum Weight Trap Cover Problem
39(1)
3.3 Algorithm Design
40(7)
3.3.1 Finding the Diameter of a Coverage Hole
40(1)
3.3.2 Algorithm Overview
41(1)
3.3.3 Removal Strategy Design
42(4)
3.3.4 Algorithm Illustration
46(1)
3.4 Performance Analysis
47(5)
3.4.1 Theoretical Analysis
47(3)
3.4.2 Network Lifetime Analysis
50(1)
3.4.3 Simulation Performance
51(1)
3.5 Localized Protocol
52(8)
3.5.1 Protocol
52(4)
3.5.2 Analysis
56(2)
3.5.3 How to Find the Largest Diameter
58(2)
3.6 Simulation Results
60(5)
3.6.1 Experiment Setup
60(1)
3.6.2 Energy Balance and Consumption
60(4)
3.6.3 Lifetime Performance Evaluation
64(1)
3.6.4 Communication Cost
64(1)
3.7 Conclusions
65(4)
References
65(4)
4 Trapping Mobile Intruders in Sensor Networks
69(28)
4.1 Introduction
69(3)
4.2 Preliminary and Problem Statement
72(2)
4.2.1 Network Model
72(1)
4.2.2 Probabilistic Trap Coverage Model
72(1)
4.2.3 Problem Statement
73(1)
4.3 Probabilistic Trap Coverage
74(10)
4.3.1 Detection Gain
74(2)
4.3.2 Impact of Maximum Speed
76(1)
4.3.3 Circular Graph
77(5)
4.3.4 (D, ε)-Trap Coverage
82(1)
4.3.5 Solving an Open Problem in Barrier Coverage
83(1)
4.4 Localized Protocol
84(6)
4.4.1 Probabilistic Trap Coverage Protocol
84(3)
4.4.2 Protocol Analysis
87(3)
4.5 Performance Evaluation
90(4)
4.5.1 Environment Setup
90(1)
4.5.2 Simulation Results
91(3)
4.6 Conclusion
94(3)
References
94(3)
5 Conclusions
97