Muutke küpsiste eelistusi

Engineering the Atom-Photon Interaction: Controlling Fundamental Processes with Photons, Atoms and Solids 1st ed. 2015 [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 405 pages, kõrgus x laius: 235x155 mm, kaal: 7568 g, 112 Illustrations, color; 43 Illustrations, black and white; XVII, 405 p. 155 illus., 112 illus. in color., 1 Hardback
  • Sari: Nano-Optics and Nanophotonics
  • Ilmumisaeg: 27-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319192302
  • ISBN-13: 9783319192307
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 405 pages, kõrgus x laius: 235x155 mm, kaal: 7568 g, 112 Illustrations, color; 43 Illustrations, black and white; XVII, 405 p. 155 illus., 112 illus. in color., 1 Hardback
  • Sari: Nano-Optics and Nanophotonics
  • Ilmumisaeg: 27-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319192302
  • ISBN-13: 9783319192307
This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.

Unconventional Quantum Light Sources.- Bright Sources.- Distinguishability of Photons.- New Sources of Entangled Photon Pairs.- Light Meets a Single Atom.- Light Meets Many Atoms.- Storage and Retrieval of Highly Non-Classical States.- Beyond Photons.
Part I Cavity QED
1 Cavity Induced Interfacing of Atoms and Light
3(36)
Axel Kuhn
1.1 Introduction
3(1)
1.2 Cavities for Interfacing Light and Matter
4(14)
1.2.1 Atom-Photon Interaction in Resonators
5(4)
1.2.2 Single-Photon Emission
9(9)
1.3 Cavity-Enhanced Atom-Photon Entanglement
18(3)
1.4 Photon Coherence, Amplitude and Phase Control
21(7)
1.4.1 Indistinguishability of Photons
21(2)
1.4.2 Arbitrary Shaping of Amplitude and Phase
23(5)
1.5 Cavity-Based Quantum Memories
28(6)
1.6 Future Directions
34(5)
References
35(4)
2 A Highly Efficient Single Photon-Single Quantum Dot Interface
39(36)
Loic Lanco
Pascale Senellart
2.1 Motivations
39(2)
2.2 Efficient Quantum Dot-Photon Interfacing
41(5)
2.2.1 Basics of Cavity-QED in a Quantum Dot-Micropillar Device
41(2)
2.2.2 Deterministic QD-Cavity Coupling Through In Situ Lithography
43(2)
2.2.3 Critical Parameters: Beyond the Purcell Factor
45(1)
2.3 Ultrabright Single Photon Sources
46(13)
2.3.1 Why Are Bright Single Photon Sources Desirable?
46(1)
2.3.2 Demonstration of Single Photon Sources with Record Brightness
47(2)
2.3.3 Purity of the Single Photon Emission
49(2)
2.3.4 High Indistinguishability Through a Control of the QD Environment
51(3)
2.3.5 Electrically Controlled Sources
54(2)
2.3.6 Implementation of an Entangling CNOT Gate
56(3)
2.4 Nonlinear Optics with Few-Photon Pulses
59(6)
2.4.1 Motivations: Photon Blockade and Photon Routing
59(2)
2.4.2 Observation of Nonlinearities at the Few-Photon Scale
61(2)
2.4.3 Device Optimization: Towards a Single-Photon Router?
63(1)
2.4.4 Resonant Excitation: Application to Fast Optical Nanosensing
64(1)
2.5 Future Challenges
65(10)
References
67(8)
Part II Light Meets a Single Atom 3 Photon-Atom Coupling with Parabolic Mirrors
75(70)
Markus Sondermann and Gerd Leuchs
3.1 Coupling to an Atom: The Role of Dipole Radiation
75(3)
3.1.1 General Considerations
75(2)
3.1.2 Defining a Coupling Efficiency
77(1)
3.2 Dipole-Mode Generation with a Parabolic Mirror
78(4)
3.2.1 Finding the Optimum Field Mode
78(3)
3.2.2 Generation and Characterization of Field Modes Tailored for Efficient Free-Space Coupling
81(1)
3.3 Overview of Experiments on Photon-Atom Coupling in Free Space
82(5)
3.3.1 Shifting the Phase of a Coherent Beam
83(1)
3.3.2 Extinction of a Weak Coherent Beam
84(1)
3.3.3 Absorption of Single Photons
85(2)
3.4 Absorbing a Single Photon: Temporal Mode Shaping
87(3)
3.4.1 Choosing the Right Mode
87(1)
3.4.2 Generation of Exponentially Increasing Pulses
88(1)
3.4.3 An Analogous Experiment: Coupling to a Resonator
89(1)
3.5 Trapping Ions in Parabolic Mirrors
90(2)
3.5.1 Parabolic Mirror Ion Trap
90(2)
3.5.2 Fluorescence Collection
92(1)
3.6 Experimental Determination of the Coupling Efficiency
92(3)
3.7 Outlook
95(4)
References
95(4)
4 Free Space Interference Experiments with Single Photons and Single Ions
99(26)
Lukas Slodicka
Gabriel Hetet
Markus Hennrich
Rainer Blatt
4.1 Coupling to a Single Ion in Free Space
100(11)
4.1.1 Electromagnetically Induced Transparency from a Single Atom in Free Space
101(7)
4.1.2 Single Ion as a Mirror of an Optical Cavity
108(3)
4.2 Probabilistic Entanglement Between Distant Ions
111(14)
4.2.1 Single-Photon and Two-Photon Protocols
111(3)
4.2.2 Generation of Entanglement by a Single Photon Detection
114(1)
4.2.3 Experimental Realization
115(5)
4.2.4 Summary
120(1)
References
121(4)
5 Single Photon Absorption by a Single Atom: From Heralded Absorption to Polarization State Mapping
125(20)
Nicolas Piro
Jurgen Eschner
5.1 Introduction
126(1)
5.2 Single Photon-Single Atom Interaction and Entanglement Schemes
127(3)
5.2.1 Single Photon Absorption Schemes
127(2)
5.2.2 Photon-Atom State Transfer and Entanglement Swapping Schemes
129(1)
5.3 Experimental Setup
130(2)
5.4 Experimental Progress
132(6)
5.4.1 Single Photon Absorption by a Single Ion
132(2)
5.4.2 Polarization Control in the Absorption Event
134(4)
5.4.3 Photon-to-Ion State Transfer by Heralded Absorption
138(1)
5.5 Conclusions and Outlook
138(7)
References
140(5)
Part III Light Meets Many Atoms
6 Narrowband Biphotons: Generation, Manipulation, and Applications
145(38)
Chih-Sung Chuu
Shengwang Du
6.1 Introduction
145(1)
6.2 Monolithic Resonant Parametric Down-Conversion with Cluster Effect
146(3)
6.2.1 Single-Mode Output
147(1)
6.2.2 Experimental Realization
148(1)
6.3 Backward-Wave Biphoton Generation
149(8)
6.3.1 General Formulism: Free Space
150(3)
6.3.2 General Formalism: Resonant SPDC
153(2)
6.3.3 Single-Mode Output
155(1)
6.3.4 Experimental Challenge
156(1)
6.4 Spontaneous Four-Wave Mixing with Electromagnetically Induced Transparency
157(8)
6.4.1 Damped Rabi Oscillation Regime
160(2)
6.4.2 Group Delay Regime
162(3)
6.5 Manipulation of Narrowband Single Photons
165(8)
6.6 Applications
173(6)
6.7 Summary
179(4)
References
179(4)
7 Generation, Characterization and Use of Atom-Resonant Indistinguishable Photon Pairs
183(34)
Morgan W. Mitchell
7.1 Introduction
183(3)
7.1.1 CESPDC Sources
184(1)
7.1.2 Atomic Frequency Filters
185(1)
7.2 Atom-Resonant Indistinguishable Photon Pairs in a Single Mode
186(11)
7.2.1 Type-I CESPDC Source
186(1)
7.2.2 A FADOF at the Rb D1 Line
187(3)
7.2.3 Spectral Purification of Degenerate Photon Pairs from Type-I CESPDC
190(3)
7.2.4 Interference of Biphoton Amplitudes from Distinct Sources
193(3)
7.2.5 Full Reconstruction of the Biphoton Wave-function
196(1)
7.3 Generation of Spectrally-Pure, Atom-Resonant NooN States
197(11)
7.3.1 NooN States
197(1)
7.3.2 Type-II CESPDC Source
198(4)
7.3.3 Induced Dichroism Atomic Filter
202(1)
7.3.4 Spectral Purity Measurement
203(1)
7.3.5 Quantum-Enhanced Sensing of Atoms Using Atom-Tuned NooN States
204(4)
7.4 Conclusions
208(9)
References
211(6)
Part IV Storage and Retrieval of Non-classical States
8 On-Demand Release of a Heralded Quantum State from Concatenated Optical Cavities
217(24)
Jun-ichi Yoshikawa
Kenzo Makino
Akira Furusawa
8.1 Introduction
217(3)
8.2 Working Principle
220(2)
8.3 Experimental Demonstration for a Heralded Single-Photon State
222(7)
8.3.1 Experimental Methods
223(5)
8.3.2 Experimental Results
228(1)
8.4 Summary
229(12)
References
239(2)
9 Quantum Light Storage in Solid State Atomic Ensembles
241(36)
Hugues de Riedmatten
Mikael Afzelius
9.1 Introduction
241(2)
9.2 Rare-Earth-Ion Doped Crystals
243(2)
9.3 Quantum Memory Protocols
245(4)
9.4 State of the Art
249(2)
9.5 Quantum Light Sources Compatible with Solid State Quantum Memories
251(8)
9.5.1 Characterizing Photon Pair Sources
253(2)
9.5.2 A Quantum Light Source Compatible with Nd Doped Crystals
255(2)
9.5.3 A Quantum Light Source Compatible with Pr Doped Crystals
257(2)
9.6 Quantum Light Storage Experiments
259(7)
9.6.1 Quantum Entanglement Storage in Nd:YSO Crystals
259(4)
9.6.2 Quantum Storage of Heralded Single Photon in a Pr3+:Y2SiO5 Crystal
263(3)
9.7 Prospects for Spin-Wave Storage with Quantum Light
266(2)
9.8 Outlook
268(9)
References
268(9)
Part V New Sources of Entangled Photon Pairs
10 Engineering of Quantum Dot Photon Sources via Electro-elastic Fields
277(26)
Rinaldo Trotta
Armando Rastelli
10.1 Engineering of Quantum Dot Photon Sources via Electro-elastic Fields
277(3)
10.2 Hybrid Semiconductor-Piezoelectric Quantum Dot Devices: The First High-Speed, Wavelength-Tunable, and All-Electrically-Controlled Source of Single Photons
280(4)
10.3 Independent Control of Different Quantum Dot Parameters via Electro-elastic Fields
284(4)
10.3.1 Independent Control of Charge State and Emission Energy
284(2)
10.3.2 Independent Control of Exciton and Biexciton Energy
286(2)
10.4 Controlling and Erasing the Fine Structure Splitting for the Generation of Highly Entangled Photon Pairs
288(10)
10.4.1 Controlling and Erasing the Exciton Fine Structure Splitting via Electro-elastic Fields
289(4)
10.4.2 Generation of Highly Entangled Photon Pairs via Electro-elastic Tuning of Single Semiconductor QDs
293(5)
10.5 Conclusions and Outlook
298(5)
References
299(4)
11 Resonant Excitation and Photon Entanglement from Semiconductor Quantum Dots
303(24)
Ana Predojevic
11.1 Introduction
303(1)
11.2 On-Demand Generation of Photon Pairs Using Single Semiconductor Quantum Dots
304(9)
11.2.1 Quantum Dots and Polarization Entanglement
305(2)
11.2.2 Resonant Excitation
307(2)
11.2.3 Theoretical Description of the Two-Photon Excitation Process
309(4)
11.3 Measurements Under Resonant Excitation
313(8)
11.3.1 Coherent Control
313(1)
11.3.2 Photon Statistics Under Resonant Excitation
314(2)
11.3.3 Time-Bin Entanglement
316(5)
11.4 Future Directions
321(6)
References
321(6)
Part VI Distinguishability of Photons
12 Generation and Application of Frequency-Uncorrelated Photon Pairs
327(16)
Tian-Ming Zhao
Xiao-Hui Bao
Bo Zhao
Jian-Wei
Pan
12.1 Introduction
327(2)
12.2 Single Photon Wavepacket Generation by SPDC
329(1)
12.3 Group Velocity Mismatching
330(4)
12.4 Narrowband Entanglement Sources
334(4)
12.5 Applications
338(3)
12.6 Conclusions
341(2)
References
341(2)
13 Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons
343(22)
C. Schneider
P. Gold
C.-Y. Lu
S. Hofling
J.-W. Pan
M. Kamp
13.1 Introduction
343(1)
13.2 A Pedestrian's Guide to Two Photon Interference
344(3)
13.2.1 Quantum Dot Single Photon Source
344(1)
13.2.2 Photon Interference with Quantum Light
345(2)
13.3 A Bright Quasi-planar Single Photon Source
347(2)
13.4 Emission of Single and Indistinguishable Photons from Single Quantum Dots
349(7)
13.4.1 Single Photon Emission from Single QDs
349(4)
13.4.2 Two Photon Interference with Single Photons
353(3)
13.5 Two Photon Interference from Remote, Single Quantum Dots
356(9)
13.5.1 Conclusion
359(1)
References
360(5)
Part VII Beyond Photons
14 Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation Using Self-assembled Quantum Dots
365(38)
Peter L. McMahon
Kristiaan De Greve
14.1 Introduction
365(1)
14.2 Quantum Repeaters
366(14)
14.2.1 Motivation for Quantum Repeaters
367(6)
14.2.2 Design of Quantum Repeaters
373(7)
14.3 Quantum Dots as Building Blocks for Quantum Repeaters
380(16)
14.3.1 Quantum Dots as Quantum Memories
381(6)
14.3.2 Quantum Dots as Photon Sources
387(1)
14.3.3 Entanglement Between a Spin in a Quantum Dot and an Emitted Photon
388(8)
14.4 Conclusion
396(7)
References
398(5)
Index 403