Muutke küpsiste eelistusi

Entropy Methods for the Boltzmann Equation: Lectures from a Special Semester at the Centre Émile Borel, Institut H. Poincaré, Paris, 2001 2008 ed. [Pehme köide]

  • Formaat: Paperback / softback, 113 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, XII, 113 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1916
  • Ilmumisaeg: 14-Nov-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540737049
  • ISBN-13: 9783540737049
Teised raamatud teemal:
  • Pehme köide
  • Hind: 37,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 44,21 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 113 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, XII, 113 p., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 1916
  • Ilmumisaeg: 14-Nov-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540737049
  • ISBN-13: 9783540737049
Teised raamatud teemal:
Entropy and entropy production have recently become mathematical tools for kinetic and hydrodynamic limits, when deriving the macroscopic behaviour of systems from the interaction dynamics of their many microscopic elementary constituents at the atomic or molecular level.



During a special semester on Hydrodynamic Limits at the Centre Émile Borel in Paris, 2001 two of the research courses were held by C. Villani and F. Rezakhanlou. Both illustrate the major role of entropy and entropy production in a mutual and complementary manner and have been written up and updated for joint publication. Villani describes the mathematical theory of convergence to equilibrium for the Boltzmann equation and its relation to various problems and fields, including information theory, logarithmic Sobolev inequalities and fluid mechanics. Rezakhanlou discusses four conjectures for the kinetic behaviour of the hard sphere models and formulates four stochastic variations of this model, also reviewing known results for these.

Arvustused

From the reviews:

This nice book is based on two courses given, respectively, by Fraydoun Rezakhanlou and Cédric Villani at the Centre Émile Borel of the Institut Henri Poincaré in a special semester organized in the fall term of 2001 by Francois Golse and Stefano Olla. discusses many extensions, open questions and perspectives which should be valuable for many researchers in the field of the Boltzmann equation. This book will be useful to all mathematicians interested in entropy methods. (Clément Mouhot, Mathematical Reviews, Issue 2010 h)

1 Entropy Production and Convergence to Equilibrium 1
C. Villani
1.1 The Entropy Production Problem for the Boltzmann Equation
1
1.1.1 The Boltzmann Equation: Notation and Preliminaries
1
1.1.2 H Functional and H Theorem
4
1.1.3 What this Course is About: Convergence to Equilibrium
9
1.2 Tentative Panomara
11
1.3 Reminders from Information Theory
12
1.3.1 Background and Definitions
12
1.3.2 Inequalities
15
1.4 Quantitative H Theorem
18
1.4.1 Entropy-Entropy Production Inequalities
18
1.4.2 EEP Inequalities for the Boltzmann Equation
19
1.4.3 Proof of Cercignani's Conjecture in a Special Case
31
1.5 The State of the Art for the Spatially Homogeneous Boltzmann Equation
32
1.5.1 Preparations
32
1.5.2 Current State of Regularity Theory
34
1.5.3 Convergence to Equilibrium
35
1.6 A Review of Some Closely Related Topics
37
1.6.1 Particles Systems and Kac's Problem
37
1.6.2 The Central Limit Theorem for Maxwellian Molecules
44
1.6.3 The Role of High Energy Tails
48
1.6.4 Behavior of the Fisher Information
49
1.6.5 Variations on a Theme
50
1.7 Wiping out Spatial Inhomogeneities
51
1.8 Towards Exponential Convergence?
62
References
64
Appendix
69
2 Kinetic Limits for Interacting Particle Systems 71
F. Rezakhanlou
2.1 Introduction
71
2.2 Equilibrium Fluctuations
80
2.3 Kinetic Limits in Dimension One
91
2.4 Kinetic Limits in Higher Dimensions
98
References
105
Index 107