Muutke küpsiste eelistusi

Ergodic Theory of Expanding Thurston Maps 2017 ed. [Kõva köide]

  • Formaat: Hardback, 182 pages, kõrgus x laius: 235x155 mm, kaal: 4203 g, 12 Illustrations, black and white; XII, 182 p. 12 illus., 1 Hardback
  • Sari: Atlantis Studies in Dynamical Systems 4
  • Ilmumisaeg: 18-Apr-2017
  • Kirjastus: Atlantis Press (Zeger Karssen)
  • ISBN-10: 9462391734
  • ISBN-13: 9789462391734
  • Kõva köide
  • Hind: 73,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 86,72 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 182 pages, kõrgus x laius: 235x155 mm, kaal: 4203 g, 12 Illustrations, black and white; XII, 182 p. 12 illus., 1 Hardback
  • Sari: Atlantis Studies in Dynamical Systems 4
  • Ilmumisaeg: 18-Apr-2017
  • Kirjastus: Atlantis Press (Zeger Karssen)
  • ISBN-10: 9462391734
  • ISBN-13: 9789462391734
Thurston maps are topological generalizations of postcritically-finite rational maps. This book provides a comprehensive study of ergodic theory of expanding Thurston maps, focusing on the measure of maximal entropy, as well as a more general class of invariant measures, called equilibrium states, and certain weak expansion properties of such maps. In particular, we present equidistribution results for iterated preimages and periodic points with respect to the unique measure of maximal entropy by investigating the number and locations of fixed points. We then use the thermodynamical formalism to establish the existence, uniqueness, and various other properties of the equilibrium state for a Holder continuous potential on the sphere equipped with a visual metric. After studying some weak expansion properties of such maps, we obtain certain large deviation principles for iterated preimages and periodic points under an additional assumption on the critical orbits of the maps. This enables us to obtain general equidistribution results for such points with respect to the equilibrium states under the same assumption.
1.Introduction.- 2.Thurston maps.- 3.Ergodic theory.- 4.The measure of
maximal entropy.- 5.Equilibrium states.- 6.Asymptotic h-Expansiveness.-
7.Large deviation principles.