Preface |
|
ix | |
|
1 Bask Math and Calculus Review |
|
|
1 | (40) |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (5) |
|
|
11 | (2) |
|
|
13 | (3) |
|
|
16 | (2) |
|
Euler's Number and Natural Logarithms |
|
|
18 | (1) |
|
|
18 | (3) |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (4) |
|
|
28 | (3) |
|
|
31 | (2) |
|
|
33 | (6) |
|
|
39 | (1) |
|
|
39 | (2) |
|
|
41 | (22) |
|
Understanding Probability |
|
|
42 | (1) |
|
Probability Versus Statistics |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (2) |
|
Conditional Probability and Bayes' Theorem |
|
|
47 | (2) |
|
Joint and Union Conditional Probabilities |
|
|
49 | (2) |
|
|
51 | (2) |
|
|
53 | (7) |
|
|
60 | (1) |
|
|
61 | (2) |
|
3 Descriptive and Inferential Statistics |
|
|
63 | (46) |
|
|
63 | (2) |
|
Descriptive Versus Inferential Statistics |
|
|
65 | (1) |
|
Populations, Samples, and Bias |
|
|
66 | (3) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
73 | (1) |
|
Variance and Standard Deviation |
|
|
73 | (5) |
|
|
78 | (7) |
|
|
85 | (2) |
|
|
87 | (2) |
|
|
89 | (1) |
|
The Central Limit Theorem |
|
|
89 | (3) |
|
|
92 | (3) |
|
|
95 | (1) |
|
|
96 | (8) |
|
The T-Distribution: Dealing with Small Samples |
|
|
104 | (1) |
|
Big Data Considerations and the Texas Sharpshooter Fallacy |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
107 | (2) |
|
|
109 | (38) |
|
|
110 | (4) |
|
Adding and Combining Vectors |
|
|
114 | (2) |
|
|
116 | (3) |
|
Span and Linear Dependence |
|
|
119 | (2) |
|
|
121 | (1) |
|
|
121 | (3) |
|
Matrix Vector Multiplication |
|
|
124 | (5) |
|
|
129 | (2) |
|
|
131 | (5) |
|
Special Types of Matrices |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
Systems of Equations and Inverse Matrices |
|
|
138 | (4) |
|
Eigenvectors and Eigenvalues |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (46) |
|
A Basic Linear Regression |
|
|
149 | (4) |
|
Residuals and Squared Errors |
|
|
153 | (4) |
|
Finding the Best Fit Line |
|
|
157 | (1) |
|
|
157 | (1) |
|
Inverse Matrix Techniques |
|
|
158 | (3) |
|
|
161 | (6) |
|
|
167 | (2) |
|
Stochastic Gradient Descent |
|
|
169 | (2) |
|
The Correlation Coefficient |
|
|
171 | (3) |
|
|
174 | (5) |
|
Coefficient of Determination |
|
|
179 | (1) |
|
Standard Error of the Estimate |
|
|
180 | (1) |
|
|
181 | (4) |
|
|
185 | (6) |
|
Multiple Linear Regression |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
6 Logistic Regression and Classification |
|
|
193 | (34) |
|
Understanding Logistic Regression |
|
|
193 | (3) |
|
Performing a Logistic Regression |
|
|
196 | (1) |
|
|
196 | (2) |
|
Fitting the Logistic Curve |
|
|
198 | (6) |
|
Multivariable Logistic Regression |
|
|
204 | (4) |
|
Understanding the Log-Odds |
|
|
208 | (3) |
|
|
211 | (5) |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
219 | (3) |
|
Bayes' Theorem and Classification |
|
|
222 | (1) |
|
Receiver Operator Characteristics/Area Under Curve |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (30) |
|
When to Use Neural Networks and Deep Learning |
|
|
228 | (1) |
|
|
229 | (2) |
|
|
231 | (6) |
|
|
237 | (6) |
|
|
243 | (1) |
|
Calculating the Weight and Bias Derivatives |
|
|
243 | (5) |
|
Stochastic Gradient Descent |
|
|
248 | (3) |
|
|
251 | (2) |
|
Limitations of Neural Networks and Deep Learning |
|
|
253 | (3) |
|
|
256 | (1) |
|
|
256 | (1) |
|
8 Career Advice and the Path Forward |
|
|
257 | (30) |
|
|
258 | (2) |
|
A Brief History of Data Science |
|
|
260 | (3) |
|
|
263 | (1) |
|
|
263 | (3) |
|
|
266 | (3) |
|
|
269 | (1) |
|
|
270 | (2) |
|
|
272 | (1) |
|
Practitioner Versus Advisor |
|
|
272 | (3) |
|
What to Watch Out For in Data Science Jobs |
|
|
275 | (1) |
|
|
275 | (1) |
|
Organizational Focus and Buy-In |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
279 | (1) |
|
Competing with Existing Systems |
|
|
280 | (2) |
|
A Role Is Not What You Expected |
|
|
282 | (1) |
|
Does Your Dream Job Not Exist? |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (2) |
A Supplemental Topics |
|
287 | (22) |
B Exercise Answers |
|
309 | (14) |
Index |
|
323 | |