Muutke küpsiste eelistusi

Evolution of Thin Film Morphology: Modeling and Simulations 2008 ed. [Kõva köide]

  • Formaat: Hardback, 206 pages, kõrgus x laius: 297x210 mm, kaal: 1080 g, XI, 206 p., 1 Hardback
  • Sari: Springer Series in Materials Science 108
  • Ilmumisaeg: 30-Nov-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387751084
  • ISBN-13: 9780387751085
Teised raamatud teemal:
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 206 pages, kõrgus x laius: 297x210 mm, kaal: 1080 g, XI, 206 p., 1 Hardback
  • Sari: Springer Series in Materials Science 108
  • Ilmumisaeg: 30-Nov-2007
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387751084
  • ISBN-13: 9780387751085
Teised raamatud teemal:
The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.

Thin film deposition is the most ubiquitous and critical of the processes used to manufacture high tech devices. Morphology and microstructure of thin films directly controls their optical, magnetic, and electrical properties. This book focuses on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem both through numerical calculations based on Langevin continuum equations, and through Monte Carlo simulations based on discrete surface growth models when an analytical formulism is not convenient. Evolution of Thin-Film Morphology will be of benefit to university researchers and industrial scientists working in the areas of semiconductor processing, optical coating, plasma etching, patterning, micro-machining, polishing, tribology, and any discipline that requires an understanding of thin film growth processes. In particular, the reader will be introduced to the mathematical tools that are available to describe such a complex problem, and appreciate the utility of the various modeling methods through numerous example discussions. For beginners in the field, the text is written assuming a minimal background in mathematics and computer programming. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition.
Introduction
1(12)
Growth Front Roughness
3(2)
Measurement Techniques
5(1)
Modeling
6(7)
Continuum Models
7(1)
Discrete Models
8(5)
Part I Description of Thin Film Morphology
Surface Statistics
13(16)
Mean Height
14(1)
Interface Width
14(1)
Autocorrelation Function
15(1)
Lateral Correlation Length
16(1)
Height-Height Correlation Function
16(1)
Root-Mean-Square (RMS) Surface Slope
17(1)
Power Spectral Density Function
18(2)
Scaling
20(5)
Self-Affine Scaling
20(2)
Time-Dependent Scaling
22(3)
Statistics from a Discrete Surface
25(4)
Self-Affine Surfaces
29(18)
General Characteristics
29(3)
Lateral Correlation Functions
32(4)
Local Slope
36(1)
Power Spectral Density Function
37(2)
Dynamic Scaling
39(5)
Stationary and Nonstationary Growth
41(1)
Time-Dependent Scaling
42(1)
Anomalous Scaling
43(1)
Universality
44(3)
Mounded Surfaces
47(14)
Length Scales λ and ξ
49(1)
Lateral Correlation Functions
50(3)
Power Spectral Density Function
53(2)
Origins of Mound Formation
55(6)
Step Barrier Diffusion Effect
55(1)
Shadowing
55(1)
Reemission
56(5)
Part II Continuum Surface Growth Models
Stochastic Growth Equations
61(18)
Local Models
61(9)
Random Deposition
61(2)
Edwards--Wilkinson Equation
63(3)
Kardar--Parisi--Zhang Equation
66(2)
Mullins Diffusion Equation
68(2)
Nonlocal Models
70(2)
Numerical Integration Techniques
72(7)
Euler's Method
73(2)
Finite Difference Method
75(1)
Propagation of Errors
76(3)
Small World Growth Model
79(14)
Introduction
79(1)
Growth Equation
80(1)
Reemission
81(2)
Shadowing
83(10)
Part III Discrete Surface Growth Models
Monte Carlo Simulations
93(8)
Monte Carlo Integration
93(2)
Structure of Thin Film Growth Models
95(6)
Particle Modeling
96(2)
Aggregation
98(1)
Diffusion
99(2)
Solid-on-Solid Models
101(20)
Local Models
101(4)
Nonlocal Models
105(16)
Breakdown of Dynamic Scaling
106(10)
Competition Between Shadowing and Reemission
116(5)
Ballistic Aggregation Models
121(22)
Comparison to Solid-on-Solid Models
121(4)
Intrinsic Nodular Defects
125(4)
Aggregates on Seeds
129(14)
Aggregates Without Diffusion
130(6)
Aggregates With Diffusion
136(7)
Concluding Remarks
143(2)
A. Mathematical Appendix
145(28)
Special Functions
145(7)
Bessel Function of the First Kind
145(2)
Modified Bessel Function of the First Kind
147(1)
Modified Bessel Function of the Second Kind
148(1)
Gamma Function
148(1)
Delta Function
149(3)
Complex Integrals
152(3)
Fourier Transform of a Product
155(2)
Power Spectral Density Functions
157(16)
Self-Affine Surface -- Exponential Model
157(2)
Self-Affine Surface -- K-Correlation Model
159(3)
Mounded Surface -- Exponential Model
162(2)
Mounded Surface -- K-Correlation Model
164(5)
Summary
169(4)
B. Euler's Method Implementation
173(6)
C. Small World Model Implementation
179(6)
D. Solid-on-Solid Model Implementation
185(6)
References 191(10)
Symbols 201(2)
Index 203