Muutke küpsiste eelistusi

Evolutionary Algorithms in Engineering Applications 1997 ed. [Kõva köide]

  • Formaat: Hardback, 555 pages, kõrgus x laius: 235x155 mm, kaal: 2180 g, XXI, 555 p., 1 Hardback
  • Ilmumisaeg: 20-May-1997
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540620214
  • ISBN-13: 9783540620211
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 555 pages, kõrgus x laius: 235x155 mm, kaal: 2180 g, XXI, 555 p., 1 Hardback
  • Ilmumisaeg: 20-May-1997
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540620214
  • ISBN-13: 9783540620211
Evolutionary algorithms are general-purpose search procedures based on the mechanisms of natural selection and population genetics. They are appealing because they are simple, easy to interface, and easy to extend. This volume is concerned with applications of evolutionary algorithms and associated strategies in engineering. It will be useful for engineers, designers, developers, and researchers in any scientific discipline interested in the applications of evolutionary algorithms. The volume consists of five parts, each with four or five chapters. The topics are chosen to emphasize application areas in different fields of engineering. Each chapter can be used for self-study or as a reference by practitioners to help them apply evolutionary algorithms to problems in their engineering domains.

Evolutionary algorithms are simple, easy to interface, and easy to extend. This volume discusses how they can be applied in different fields of engineering.
Part I Introduction 3(44) Evolutionary Algorithms -- An Overview 3(26) Dipankar Dasgupta Zbigniew Michalewicz Robust Encodings in Genetic Algorithms 29(18) Simon Ronald Part II Architecture and Civil Engineering 47(108) Genetic Engineering and Design Problems 47(22) John S. Gero Vladimir A. Kazakov Thorsten Schnier The Generation of Form Using an Evolutionary Approach 69(18) M. A. Rosenman Evolutionary Optimization of Composite Structures 87(16) Rodolphe Le Riche Raphael T. Haftka Flaw Detection and Configuration with Genetic Algorithms 103(14) Sushil J. Louis Fang Zhao Xiaogang Zeng A Genetic Algorithm Approach for River Management 117(18) J. Phillip King Hazem S. Fahmy Mark W. Wentzel Hazards in Genetic Design Methodologies 135(20) Gerald P. Roston Part III Computer Science and Engineering 155(162) The Identification and Characterization of Workload Classes 155(18) Chrisila C. Pettey Patricia White Larry Dowdy Darrell Burkhead Lossless and Lossy Data Compression 173(16) Wee K. Ng Sunghyun Choi Chinya Ravishankar Database Design with Genetic Algorithms 189(18) Walter Cedeno V. Rao Vemuri Designing Multiprocessor Scheduling Algorithms Using a Distributed Genetic Algorithm System 207(16) Kelvin K. Yue David J. Lilja Prototype Based Supervised Concept Learning Using Genetic Algorithms 223(18) Sandip Sen Leslie Knight Kevin Legg Prototyping Intelligent Vehicle Modules Using Evolutionary Algorithms 241(18) Shumeet Baluja Rahul Sukthankar John Hancock Gate-Level Evolvable Hardware: Empirical Study and Application 259(18) Hitoshi Iba Masaya Iwata Tetsuya Higuchi Physical Design of VLSI Circuits and the Application of Genetic Algorithms 277(16) Jens Lienig Statistical Generalization of Performance-Related Heuristics for Knowledge-Lean Applications 293(24) Arthur Ieumwananonthachai Benjamin W. Wah Part IV Electrical, Control and Signal Processing 317(136) Optimal Scheduling of Thermal Power Generation Using Evolutionary Algorithms 317(12) Dipankar Dasgupta Genetic Algorithms and Genetic Programming for Control 329(16) Dimitris C. Dracopoulos Global Structure Evolution and Local Parameter Learning for Control System Model Reductions 345(16) Yun Li Kay Chen Tan Mingrui Gong Adaptive Recursive Filtering Using Evolutionary Algorithms 361(16) Michael S. White Stuart J. Flockton Numerical Techniques for Efficient Sonar Bearing and Range Searching in the Near Field Using Genetic Algorithms 377(32) D. J. Edwards A. J. Keane Signal Design for Radar Imaging in Radar Astronomy: Genetic Optimization 409(16) Benjamin C. Flores Vladik Kreinovich Roberto Vasquez Evolutionary Algorithms in Target Acquisition and Sensor Fusion 425(28) Steven P. Smith Bertrand Daniel Dunay Part V Mechanical and Industrial Engineering 453 Strategies for the Integration of Evolutionary/Adaptive Search with the Engineering Design Process 453(26) I. C. Parmee Identification of Mechanical Inclusions 479(18) Marc Schoenauer Francois Jouve Leila Kallel GeneAS: A Robust Optimal Design Technique for Mechanical Component Design 497(18) Kalyanmoy Deb Genetic Algorithms for Optimal Cutting 515(16) Toshihiko Ono Gen Watanabe Practical Issues and Recent Advances in Job- and Open-Shop Scheduling 531(16) David Corne Peter Ross The Key Steps to Achieve Mass Customization 547 Bill Fulkerson