Muutke küpsiste eelistusi

Evolutionary Machine Design: Methodology & Applications [Kõva köide]

  • Formaat: Hardback, kaal: 696 g, Illustrations
  • Ilmumisaeg: 08-Apr-2005
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1594544050
  • ISBN-13: 9781594544057
Teised raamatud teemal:
  • Kõva köide
  • Hind: 274,60 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, kaal: 696 g, Illustrations
  • Ilmumisaeg: 08-Apr-2005
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-10: 1594544050
  • ISBN-13: 9781594544057
Teised raamatud teemal:
List of Figures
xi
List of Tables
xv
List of Algorithms
xvii
Preface xix
I. Evolvable Hardware & Genetic Programming
1(108)
Routine High-Return Human-Competitive Evolvable Hardware
3(30)
John R. Koza
Martin A. Keane
Matthew J. Streeter
Introduction
4(1)
Automatic Circuit Synthesis
4(6)
High-Return Human-Competitive Intelligence
10(4)
Progression of More Substantial Results
14(4)
Description of Six 21st-Century Patented Circuits
18(2)
Results for Six 21st-Century Patented Circuits
20(4)
Commercial Practicality of GP
24(4)
Summary
28(5)
Bibliography
29(4)
Using Generative Representations to Evolve Robots
33(26)
Gregory S. Hornby
Introduction
33(1)
Generative Representations
34(3)
Generative Robots Encoding
37(6)
Oscillator Controlled Genobots
37(2)
Neural Networks
39(1)
Neural-Network Controlled Genobots
40(2)
Generative Representation Example for Neural-Network Controlled Genobots
42(1)
Robot Simulator
43(1)
Evolutionary Design System
43(1)
Evolution of Oscillator Controlled Robots
44(4)
Neural-Network Controlled Robots
48(4)
Advantages of a Generative Representation
52(3)
Summary
55(4)
Bibliography
57(2)
Intrinsic Evolutionary Design of Analog Building Blocks for Fuzzy Logic Controllers
59(22)
Jose Franco M. do Amaral
Jorge Luis M. do Amaral
Ricardo Tanscheit
Marco A. C. Pacheco
Marley M. B. R. Vellasco
Introduction
60(2)
Analog Fuzzy Logic Controllers
62(2)
Evolvable Hardware Platform
64(6)
Analog Reconfigurable Circuit
67(2)
Evolution of a Fuzzy Circuit
69(1)
Tests
70(4)
The First Experiment
70(2)
The Second Experiment
72(1)
The Third Experiment
72(1)
The Fourth Experiment
73(1)
Summary
74(7)
Bibliography
77(4)
Improving the Search by Encoding Multiple Solutions in a Chromosome
81(28)
Mihai Oltean
Introduction
81(2)
Multiple Solution Programming
83(1)
Test Problems and Metric of Performance
83(1)
Multi Expression Programming
84(6)
MEP Representation
84(1)
Decoding MEP Chromosomes and Fitness Assignment Process
85(1)
Search Operators
86(1)
MEP Algorithm
87(1)
Single Expression Programming
87(1)
Numerical Experiments with MEP and SEP
88(2)
Linear Genetic Programming
90(6)
LGP Representation
90(1)
Decoding LGP Individuals
90(1)
Genetic Operators
90(2)
LGP Algorithm
92(1)
Multi Solution Linear Genetic Programming
93(1)
Numerical Experiments with LGP and MS-LGP
94(2)
Infix Form Genetic Programming
96(6)
Prerequisite
96(1)
IFGP Individual Representation
96(2)
IFGP Decoding Process
98(1)
Fitness Assignment Process
99(1)
Search Operators
100(1)
IFGP Algorithm
100(1)
Single Solution Infix Form Genetic Programming
101(1)
Numerical Experiments with IFGP and SS-IFGP
101(1)
Summary
102(7)
Bibliography
105(4)
II. Evolutionary Designs
109(108)
Real-World Evolutionary Designs: Secure Evolvable Hardware for Public-Key Cryptosystems
111(28)
Nadia Nedjah
Luiza de Macedo Mourelle
Introduction
112(1)
Genetic Programming
113(1)
Evolving Hardware for Digital Circuits
114(6)
Circuit Specification Encoding
114(2)
Circuit Specification Reproduction
116(2)
Circuit Specification Evaluation
118(2)
Evolutionary vs. Conventional Designs
120(8)
RSA-Based Cryptosystems
128(2)
Evolutionary vs. Conventional Hardware
130(5)
Summary
135(4)
Bibliography
137(2)
Automated Discovery of Innovative Designs of Mechanical Components Using Evolutionary Multi-objective Algorithms
139(26)
Kalyanmoy Deb
Shamik Chaudhuri
Introduction
139(1)
Evolutionary Multi-objective Optimization (EMO)
140(1)
An Evolutionary Multi-objective Optimizer
141(2)
Constraint-Handling in NSGA-II
143(1)
EMO for Discovering Useful Design Variants
143(3)
Phase I: Finding a Set of Pareto-Optimal Solutions
144(1)
Phase II: Analyzing Optimized Solutions for Useful Properties
145(1)
Proposed Multi-objective Optimization Procedure
146(1)
Iterative local-search based EMO
147(1)
Simulation Results
147(14)
A Cantilever Plate
148(4)
Comparison with NSGA-II Alone
152(2)
A Simply-Supported Plate
154(3)
A Tower Plate
157(2)
A Connecting Plate
159(2)
Summary
161(4)
Bibliography
163(2)
Toward Efficient Topological Synthesis of Dynamic Systems Using Genetic Programming
165(28)
Jianjun Hu
Kisung Seo
Erik D. Goodman
Ronald Rosenberg
Introduction
166(1)
Basic Framework for Bond Graph Synthesis
167(6)
Bond Graphs
167(2)
Automated Synthesis of Bond Graphs by Genetic Programming
169(4)
More Advanced Approaches
173(4)
Node-Encoding for Bond Graph Synthesis by Genetic Programming
173(2)
Hybrid-Encoding for Bond Graph Synthesis by Genetic Programming
175(2)
Encoding with a Realizable Function Set
177(1)
Scalable Benchmark for Automated Synthesis
177(3)
Topologically Open-Ended Bond Graph Synthesis
180(6)
Search Bias of Representation in Topologically Open-Ended Synthesis
181(2)
Representation and Scalability: How Function Set Affects Efficiency
183(2)
Population Seeding and the Efficiency of Topology Search
185(1)
Discussion
186(1)
Summary
187(6)
Bibliography
189(4)
The Role of Simulated Evolution in Bioinformatics
193(24)
Andy Auyeung
Ajith Abraham
Introduction
193(2)
The Precursor of Bioinformatics
193(1)
Modern Bioinformatics
194(1)
Goal and Layout
194(1)
An Overview of Bioinformatics
195(6)
Important Concepts in Bioinformatics
195(2)
Sequence Alignments
197(1)
Multiple Sequence Alignments
198(1)
Functional Site Identifications
199(1)
Evolutionary Computing Applications in Bioinformatics
200(1)
Genome Reversal Distance Estimation
201(5)
Introduction
201(1)
The Breakpoint Graph
202(2)
The Evolutionary Computing Solution
204(1)
Open Problems
205(1)
Subset Problem for Phylogenetic Data
206(6)
Introduction
206(1)
The Perfect Phylogeny
207(1)
The Vertex Cover Problem
208(1)
The Evolutionary Computing Solution
209(2)
Open Problems
211(1)
Summary
212(5)
Bibliography
213(4)
Index 217(2)
Reviewer List 219