Muutke küpsiste eelistusi

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance 2021 ed. [Kõva köide]

  • Formaat: Hardback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 72 Illustrations, color; 46 Illustrations, black and white; XIX, 167 p. 118 illus., 72 illus. in color., 1 Hardback
  • Sari: Studies in Computational Intelligence 964
  • Ilmumisaeg: 08-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030755207
  • ISBN-13: 9783030755201
Teised raamatud teemal:
  • Kõva köide
  • Hind: 150,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 177,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 167 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 72 Illustrations, color; 46 Illustrations, black and white; XIX, 167 p. 118 illus., 72 illus. in color., 1 Hardback
  • Sari: Studies in Computational Intelligence 964
  • Ilmumisaeg: 08-Jun-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030755207
  • ISBN-13: 9783030755201
Teised raamatud teemal:

The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.


Introduction.- Neuro-Fuzzy Approach and its Application in Recommender
Systems.- Novel Explainable Recommenders Based on Neuro-Fuzzy.- Explainable
Recommender for Investment Advisers.- Summary and Final Remarks.