Muutke küpsiste eelistusi

Fabrication Engineering at the Micro- and Nanoscale 4th Revised edition [Pehme köide]

Designed for advanced undergraduate or first-year graduate courses in semiconductor or microelectronic fabrication, Fabrication Engineering at the Micro- and Nanoscale, Fourth Edition, covers the entire basic unit processes used to fabricate integrated circuits and other devices.

With many worked examples and detailed illustrations, this engaging introduction provides the tools needed to understand the frontiers of fabrication processes.

NEW TO THIS EDITION

Coverage of many new topics including:
- the flash and spike annealing processes
- extreme ultraviolet (EUV) lithography
- GaN epitaxial growth and doping
- double exposure routes to sub-35-nm lithography
- architectures for nanoscale CMOS as practiced at the 45-nm node
- trigate or FINFET CMOS planned for 22 nm and below
- bulk silicon and thin film solar cell manufacturing
- GaN LED fabrication
- microfluidics

Updated sections on nonoptical lithography

Expanded content on state-of-the-art CMOS

A Companion Website with PowerPoint slides of figures from the text (www.oup.com/us/campbell)

An Instructor's Solutions Manual, available to registered adopters of the text (978-0-19-986121-7)

Arvustused

This is one of the best texts in the field. It provides the most complete coverage of fabrication techniques. * Xian-An Cao, West Virginia University * I like Campbell's style and enjoy reading the text. The material is appropriate for the intended audience and there are good summaries of background material. * Trevor Thornton, Arizona State University *

Preface xiii
PART I OVERVIEW AND MATERIALS
1(40)
Chapter 1 An Introduction To Microelectronic Fabrication
3(7)
1.1 Microelectronic Technologies: A Simple Example
5(2)
1.2 Unit Processes and Technologies
7(1)
1.3 A Roadmap for the Course
8(1)
1.4 Summary
9(1)
Chapter 2 Semiconductor Substrates
10(31)
2.1 Phase Diagrams and Solid Solubility
11(4)
2.2 Crystallography and Crystal Structure
15(1)
2.3 Crystal Defects
16(7)
2.4 Czochralski Growth
23(8)
2.5 Bridgman Growth of GaAs
31(2)
2.6 Float Zone and Other Growth
33(1)
2.7 Wafer Preparation and Specifications
34(2)
2.8 Summary and Future Trends
36(5)
Problems
36(2)
References
38(3)
PART II UNIT PROCESSES I: HOT PROCESSING AND ION IMPLANTATION
41(132)
Chapter 3 Diffusion
43(32)
3.1 Fick's Diffusion Equation in One Dimension
43(2)
3.2 Atomistic Models of Diffusion
45(5)
3.3 Analytic Solutions of Fick's Law
50(4)
3.4 Diffusion Coefficients for Common Dopants
54(3)
3.5 Analysis of Diffused Profiles
57(7)
3.6 Diffusion in SiO2
64(2)
3.7 Simulations of Diffusion Profiles
66(4)
3.8 Summary
70(5)
Problems
70(2)
References
72(3)
Chapter 4 Thermal Oxidation
75(36)
4.1 The Deal--Grove Model of Oxidation
75(3)
4.2 The Linear and Parabolic Rate Coefficients
78(4)
4.3 The Initial Oxidation Regime
82(3)
4.4 The Structure of SiO2
85(1)
4.5 Oxide Characterization
86(7)
4.6 The Effects of Dopants During Oxidation and Polysilicon Oxidation
93(3)
4.7 Silicon Oxynitrides
96(1)
4.8 Alternative Gate Insulators+
97(2)
4.9 Oxidation Systems
99(2)
4.10 Numeric Oxidations+
101(1)
4.11 Summary
102(9)
Problems
104(2)
References
106(5)
Chapter 5 Ion Implantation
111(35)
5.1 Idealized Ion Implantation Systems
112(6)
5.2 Coulomb Scattering
118(1)
5.3 Vertical Projected Range
119(6)
5.4 Channeling and Lateral Projected Range
125(2)
5.5 Implantation Damage
127(5)
5.6 Shallow Junction Formation+
132(2)
5.7 Buried Dielectrics+
134(2)
5.8 Ion Implantation Systems: Problems and Concerns
136(3)
5.9 Numerical Implanted Profiles+
139(1)
5.10 Summary
139(7)
Problems
140(2)
References
142(4)
Chapter 6 Rapid Thermal Processing
146(27)
6.1 Gray Body Radiation, Heat Exchange, and Optical Absorption
147(3)
6.2 High Intensity Optical Sources and Chamber Design
150(3)
6.3 Temperature Measurement
153(4)
6.4 Thermoplastic Stress
157(1)
6.5 Rapid Thermal Activation of Impurities
158(3)
6.6 Rapid Thermal Processing of Dielectrics
161(2)
6.7 Silicidation and Contact Formation
163(1)
6.8 Alternative Rapid Thermal Processing Systems
164(1)
6.9 Summary
165(8)
Problems
166(1)
References
166(7)
PART III UNIT PROCESSES 2: PATTERN TRANSFER
173(164)
Chapter 7 Optical Lithography
175(37)
7.1 Lithography Overview
175(5)
7.2 Diffraction
180(2)
7.3 The Modulation Transfer Function and Optical Exposures
182(3)
7.4 Source Systems and Spatial Coherence
185(5)
7.5 Contact/Proximity Printers
190(4)
7.6 Projection Printers
194(7)
7.7 Advanced Mask Concepts+
201(3)
7.8 Surface Reflections and Standing Waves
204(2)
7.9 Alignment
206(1)
7.10 Summary
207(5)
Problems
208(1)
References
209(3)
Chapter 8 Photoresists
212(26)
8.1 Photoresist Types
212(1)
8.2 Organic Materials and Polymers
213(2)
8.3 Typical Reactions of DQN Positive Photoresist
215(2)
8.4 Contrast Curves
217(3)
8.5 The Critical Modulation Transfer Function
220(1)
8.6 Applying and Developing Photoresist
221(4)
8.7 Second-Order Exposure Effects
225(4)
8.8 Advanced Photoresists and Photoresist Processes+
229(4)
8.9 Summary
233(5)
Problems
233(2)
References
235(3)
Chapter 9 Nonoptical Lithographic Techniques+
238(33)
9.1 Interactions of High Energy Beams with Matter
239(2)
9.2 Direct-Write Electron Beam Lithography Systems
241(7)
9.3 Direct-Write Electron Beam Lithography: Summary and Outlook
248(1)
9.4 X-ray and EUV Sources
249(2)
9.5 Proximity X-ray Exposure Systems
251(2)
9.6 Membrane Masks for Proximity X-ray
253(1)
9.7 EUV Lithography
254(2)
9.8 Projection Electron Beam Lithography (SCALPEL)
256(2)
9.9 E-beam and X-ray Resists
258(2)
9.10 Radiation Damage in MOS Devices
260(2)
9.11 Soft Lithography and Nanoimprint Lithography
262(3)
9.12 Summary
265(6)
Problems
265(1)
References
266(5)
Chapter 10 Vacuum Science And Plasmas
271(26)
10.1 The Kinetic Theory of Gases
271(3)
10.2 Gas Flow and Conductance
274(3)
10.3 Pressure Ranges and Vacuum Pumps
277(6)
10.4 Vacuum Seals and Pressure Measurement
283(2)
10.5 The DC Glow Discharge
285(2)
10.6 RF Discharges
287(2)
10.7 High Density Plasmas
289(3)
10.8 Summary
292(5)
Problems
293(2)
References
295(2)
Chapter 11 Etching
297(40)
11.1 Wet Etching
298(5)
11.2 Chemical Mechanical Polishing
303(3)
11.3 Basic Regimes of Plasma Etching
306(1)
11.4 High Pressure Plasma Etching
307(8)
11.5 Ion Milling
315(4)
11.6 Reactive Ion Etching
319(3)
11.7 Damage in Reactive Ion Etching+
322(2)
11.8 High Density Plasma (HDP) Etching
324(2)
11.9 Liftoff
326(2)
11.10 Summary
328(9)
Problems
328(2)
References
330(7)
PART IV UNIT PROCESSES 3: THIN FILMS
337(120)
Chapter 12 Physical Deposition: Evaporation And Sputtering
339(35)
12.1 Phase Diagrams: Sublimation and Evaporation
340(1)
12.2 Deposition Rates
341(4)
12.3 Step Coverage
345(3)
12.4 Evaporator Systems: Crucible Heating Techniques
348(2)
12.5 Multicomponent Films
350(1)
12.6 An Introduction to Sputtering
351(1)
12.7 Physics of Sputtering
352(2)
12.8 Deposition Rate: Sputter Yield
354(3)
12.9 High Density Plasma Sputtering
357(1)
12.10 Morphology and Step Coverage
358(3)
12.11 Sputtering Methods
361(2)
12.12 Sputtering of Specific Materials
363(3)
12.13 Stress in Deposited Layers
366(1)
12.14 Summary
367(7)
Problems
368(2)
References
370(4)
Chapter 13 Chemical Vapor Deposition
374(36)
13.1 A Simple CVD System for the Deposition of Silicon
375(1)
13.2 Chemical Equilibrium and the Law of Mass Action
376(4)
13.3 Gas Flow and Boundary Layers
380(4)
13.4 Evaluation of the Simple CVD System
384(1)
13.5 Atmospheric CVD of Dielectrics
385(2)
13.6 Low Pressure CVD of Dielectrics and Semiconductors in Hot Wall Systems
387(5)
13.7 Plasma-enhanced CVD of Dielectrics
392(3)
13.8 Metal CVD+
395(3)
13.9 Atomic Layer Deposition
398(3)
13.10 Electroplating Copper
401(2)
13.11 Summary
403(7)
Problems
403(1)
References
404(6)
Chapter 14 Epitaxial Growth
410(47)
14.1 Wafer Cleaning and Native Oxide Removal
411(4)
14.2 The Thermodynamics of Vapor Phase Growth
415(5)
14.3 Surface Reactions
420(1)
14.4 Dopant Incorporation
421(1)
14.5 Defects in Epitaxial Growth
422(2)
14.6 Selective Growth+
424(1)
14.7 Halide Transport GaAs Vapor Phase Epitaxy
425(1)
14.8 Incommensurate and Strained Layer Heteroepitaxy
426(3)
14.9 Metal Organic Chemical Vapor Deposition (MOCVD)
429(6)
14.10 Advanced Silicon Vapor Phase Epitaxial Growth Techniques
435(3)
14.11 Molecular Beam Epitaxy Technology
438(5)
14.12 BCF Theory+
443(5)
14.13 Gas Source MBE and Chemical Beam Epitaxy+
448(1)
14.14 Summary
449(8)
Problems
449(1)
References
450(7)
PART V PROCESS INTEGRATION
457(190)
Chapter 15 Device Isolation, Contacts, And Metallization
459(40)
15.1 Junction and Oxide Isolation
459(4)
15.2 LOCOS Methods
463(2)
15.3 Trench Isolation
465(3)
15.4 Silicon-on-Insulator Isolation Techniques
468(2)
15.5 Semi-insulating Substrates
470(1)
15.6 Schottky Contacts
471(5)
15.7 Implanted Ohmic Contacts
476(3)
15.8 Alloyed Contacts
479(2)
15.9 Multilevel Metallization
481(5)
15.10 Planarization and Advanced Interconnect
486(5)
15.11 Summary
491(8)
Problems
492(1)
References
493(6)
Chapter 16 Cmos Technologies
499(39)
16.1 Basic Long-Channel Device Behavior
499(3)
16.2 Early MOS Technologies
502(1)
16.3 The Basic 3-μm Technology
503(4)
16.4 Device Scaling
507(8)
16.5 Hot Carrier Effects and Drain Engineering
515(3)
16.6 Latchup
518(3)
16.7 Shallow Source/Drains and Tailored Channel Doping
521(3)
16.8 The Universal Curve and Advanced CMOS
524(1)
16.9 A Nanoscale CMOS Process
525(2)
16.10 Nonplanar CMOS
527(2)
16.11 Summary
529(9)
Problems
529(3)
References
532(6)
Chapter 17 Other Transistor Technologies
538(39)
17.1 Basic MESFET Operation
538(1)
17.2 Basic MESFET Technology
539(2)
17.3 Digital Technologies
541(4)
17.4 MMIC Technologies
545(2)
17.5 MODFETs
547(2)
17.6 Review of Bipolar Devices: Ideal and Quasi-ideal Behavior
549(1)
17.7 Performance of BJTs
550(3)
17.8 Early Bipolar Processes
553(3)
17.9 Advanced Bipolar Processes
556(7)
17.10 BiCMOS
563(2)
17.11 Thin Film Transistors
565(3)
17.12 Summary
568(9)
Problems
569(3)
References
572(5)
Chapter 18 Optoelectronic And Solar Technologies
577(18)
18.1 Optoelectronic Devices Overview
578(1)
18.2 Direct-Gap Inorganic LEDs
579(4)
18.3 Polymer/Organic Light-Emitting Diodes
583(2)
18.4 Lasers
585(1)
18.5 Photovoltaic Devices Overview
586(1)
18.6 Silicon Based Photovoltaic Device Fabrication
587(3)
18.7 Other Photovoltaic Technologies
590(2)
18.8 Summary
592(3)
References
592(3)
Chapter 19 Mems
595(52)
19.1 Fundamentals of Mechanics
596(2)
19.2 Stress in Thin Films
598(1)
19.3 Mechanical-to-Electrical Transduction
599(5)
19.4 Mechanics of Common MEMS Devices
604(4)
19.5 Bulk Micromachining Etching Techniques
608(8)
19.6 Bulk Micromachining Process Flow
616(4)
19.7 Surface Micromachining Basics
620(4)
19.8 Surface Micromachining Process Flow
624(3)
19.9 MEMS Actuators
627(5)
19.10 High Aspect Ratio Microsystems Technology (HARMST)
632(2)
19.11 Microfluidics
634(4)
19.12 Summary
638(9)
Problems
640(2)
References
642(5)
Appendix I Acronyms And Common Symbols 647(6)
Appendix II Properties Of Selected Semiconductor Materials 653(1)
Appendix III Physical Constants 654(2)
Appendix IV Conversion Factors 656(3)
Appendix V Some Properties Of The Error Function 659(4)
Index 663
Stephen A. Campbell is the Bordeau Professor of Electrical and Computer Engineering at the University of Minnesota and a fellow of IEEE.