Preface |
|
xiii | |
|
1 An Overview and Brief History of Feedback Control |
|
|
1 | (22) |
|
A Perspective on Feedback Control |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1 A Simple Feedback System |
|
|
3 | (3) |
|
1.2 A First Analysis of Feedback |
|
|
6 | (4) |
|
1.3 Feedback System Fundamentals |
|
|
10 | (1) |
|
|
11 | (6) |
|
1.5 An Overview of the Book |
|
|
17 | (6) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (3) |
|
|
23 | (61) |
|
A Perspective on Dynamic Models |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.1 Dynamics of Mechanical Systems |
|
|
24 | (21) |
|
2.1.1 Translational Motion |
|
|
24 | (7) |
|
|
31 | (8) |
|
2.1.3 Combined Rotation and Translation |
|
|
39 | (3) |
|
2.1.4 Complex Mechanical Systems (W)** |
|
|
42 | (1) |
|
2.1.5 Distributed Parameter Systems |
|
|
42 | (2) |
|
2.1.6 Summary: Developing Equations of Motion for Rigid Bodies |
|
|
44 | (1) |
|
2.2 Models of Electric Circuits |
|
|
45 | (5) |
|
2.3 Models of Electromechanical Systems |
|
|
50 | (18) |
|
|
50 | (2) |
|
|
52 | (4) |
|
|
56 | (1) |
|
2.4 Heat and Fluid-Flow Models |
|
|
57 | (1) |
|
|
58 | (3) |
|
2.4.2 Incompressible Fluid Flow |
|
|
61 | (7) |
|
2.5 Historical Perspective |
|
|
68 | (16) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (12) |
|
|
84 | (96) |
|
A Perspective on System Response |
|
|
84 | (1) |
|
|
85 | (1) |
|
3.1 Review of Laplace Transforms |
|
|
85 | (33) |
|
3.1.1 Response by Convolution |
|
|
86 | (5) |
|
3.1.2 Transfer Functions and Frequency Response |
|
|
91 | (10) |
|
3.1.3 The L_ Laplace Transform |
|
|
101 | (2) |
|
3.1.4 Properties of Laplace Transforms |
|
|
103 | (2) |
|
3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion |
|
|
105 | (2) |
|
3.1.6 The Final Value Theorem |
|
|
107 | (2) |
|
3.1.7 Using Laplace Transforms to Solve Differential Equations |
|
|
109 | (2) |
|
|
111 | (1) |
|
3.1.9 Linear System Analysis Using Matlab® |
|
|
112 | (6) |
|
3.2 System Modeling Diagrams |
|
|
118 | (5) |
|
|
118 | (4) |
|
3.2.2 Block-Diagram Reduction Using Matlab |
|
|
122 | (1) |
|
3.2.3 Mason's Rule and the Signal Flow Graph (W) |
|
|
123 | (1) |
|
3.3 Effect of Pole Locations |
|
|
123 | (8) |
|
3.4 Time-Domain Specifications |
|
|
131 | (6) |
|
|
132 | (1) |
|
3.4.2 Overshoot and Peak Time |
|
|
132 | (2) |
|
|
134 | (3) |
|
3.5 Effects of Zeros and Additional Poles |
|
|
137 | (9) |
|
|
146 | (10) |
|
3.6.1 Bounded Input-Bounded Output Stability |
|
|
147 | (1) |
|
3.6.2 Stability of LTI Systems |
|
|
148 | (1) |
|
3.6.3 Routh's Stability Criterion |
|
|
149 | (7) |
|
3.7 Obtaining Models from Experimental Data: System Identification (W) |
|
|
156 | (1) |
|
3.8 Amplitude and Time Scaling (W) |
|
|
156 | (1) |
|
3.9 Historical Perspective |
|
|
156 | (24) |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
159 | (21) |
|
4 A First Analysis of Feedback |
|
|
180 | (54) |
|
A Perspective on the Analysis of Feedback |
|
|
180 | (1) |
|
|
181 | (1) |
|
4.1 The Basic Equations of Control |
|
|
182 | (6) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (2) |
|
4.2 Control of Steady-State Error to Polynomial Inputs: System Type |
|
|
188 | (8) |
|
4.2.1 System Type for Tracking |
|
|
189 | (5) |
|
4.2.2 System Type for Regulation and Disturbance Rejection |
|
|
194 | (2) |
|
4.3 The Three-Term Controller: PID Control |
|
|
196 | (16) |
|
4.3.1 Proportional Control (P) |
|
|
196 | (2) |
|
4.3.2 Integral Control (I) |
|
|
198 | (3) |
|
4.3.3 Derivative Control (D) |
|
|
201 | (1) |
|
4.3.4 Proportional Plus Integral Control (PI) |
|
|
201 | (1) |
|
|
202 | (4) |
|
4.3.6 Ziegler--Nichols Tuning of the PID |
|
|
|
|
206 | (6) |
|
4.4 Feedforward Control by Plant Model Inversion |
|
|
212 | (3) |
|
4.5 Introduction to Digital Control (W) |
|
|
214 | (1) |
|
4.6 Sensitivity of Time Response to Parameter Change (W) |
|
|
215 | (1) |
|
4.7 Historical Perspective |
|
|
215 | (19) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (16) |
|
5 The Root-Locus Design Method |
|
|
234 | (74) |
|
A Perspective on the Root-Locus Design Method |
|
|
234 | (1) |
|
|
235 | (1) |
|
5.1 Root Locus of a Basic Feedback System |
|
|
235 | (5) |
|
5.2 Guidelines for Determining a Root Locus |
|
|
240 | (11) |
|
5.2.1 Rules for Determining a Positive (180°) |
|
|
|
|
242 | (6) |
|
5.2.2 Summary of the Rules for Determining a Root Locus |
|
|
248 | (1) |
|
5.2.3 Selecting the Parameter Value |
|
|
249 | (2) |
|
5.3 Selected Illustrative Root Loci |
|
|
251 | (13) |
|
5.4 Design Using Dynamic Compensation |
|
|
264 | (11) |
|
5.4.1 Design Using Lead Compensation |
|
|
266 | (4) |
|
5.4.2 Design Using Lag Compensation |
|
|
270 | (2) |
|
5.4.3 Design Using Notch Compensation |
|
|
272 | (2) |
|
5.4.4 Analog and Digital Implementations (W) |
|
|
274 | (1) |
|
5.5 A Design Example Using the Root Locus |
|
|
275 | (6) |
|
5.6 Extensions of the Root-Locus Method |
|
|
281 | (6) |
|
5.6.1 Rules for Plotting a Negative (0°) Root Locus |
|
|
281 | (3) |
|
5.6.2 Consideration of Two Parameters |
|
|
284 | (2) |
|
|
286 | (1) |
|
5.7 Historical Perspective |
|
|
287 | (21) |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
291 | (17) |
|
6 The Frequency-Response Design Method |
|
|
308 | (125) |
|
A Perspective on the Frequency-Response Design Method |
|
|
308 | (1) |
|
|
309 | (1) |
|
|
309 | (22) |
|
6.1.1 Bode Plot Techniques |
|
|
317 | (13) |
|
6.1.2 Steady-State Errors |
|
|
330 | (1) |
|
|
331 | (2) |
|
6.3 The Nyquist Stability Criterion |
|
|
333 | (15) |
|
6.3.1 The Argument Principle |
|
|
334 | (1) |
|
6.3.2 Application of The Argument Principle to Control Design |
|
|
335 | (13) |
|
|
348 | (9) |
|
6.5 Bode's Gain--Phase Relationship |
|
|
357 | (4) |
|
6.6 Closed-Loop Frequency Response |
|
|
361 | (2) |
|
|
363 | (41) |
|
|
363 | (1) |
|
6.7.2 Lead Compensation (W) |
|
|
364 | (10) |
|
|
374 | (1) |
|
|
375 | (6) |
|
|
381 | (6) |
|
6.7.6 Design Considerations |
|
|
387 | (2) |
|
6.7.7 Specifications in Terms of the Sensitivity Function |
|
|
389 | (5) |
|
6.7.8 Limitations on Design in Terms of the Sensitivity Function |
|
|
394 | (4) |
|
|
398 | (2) |
|
6.8.1 Time Delay via the Nyquist Diagram (W) |
|
|
400 | (1) |
|
6.9 Alternative Presentation of Data |
|
|
400 | (1) |
|
|
400 | (4) |
|
6.9.2 The Inverse Nyquist Diagram (W) |
|
|
404 | (1) |
|
6.10 Historical Perspective |
|
|
404 | (29) |
|
|
405 | (3) |
|
|
408 | (1) |
|
|
408 | (25) |
|
|
433 | (157) |
|
A Perspective on State-Space Design |
|
|
433 | (1) |
|
|
434 | (1) |
|
7.1 Advantages of State-Space |
|
|
434 | (2) |
|
7.2 System Description in State-Space |
|
|
436 | (6) |
|
7.3 Block Diagrams and State-Space |
|
|
442 | (2) |
|
7.4 Analysis of the State Equations |
|
|
444 | (19) |
|
7.4.1 Block Diagrams and Canonical Forms |
|
|
445 | (12) |
|
7.4.2 Dynamic Response from the State |
|
|
|
|
457 | (6) |
|
7.5 Control-Law Design for Full-State Feedback |
|
|
463 | (14) |
|
7.5.1 Finding the Control Law |
|
|
464 | (9) |
|
7.5.2 Introducing the Reference Input with Full-State Feedback |
|
|
473 | (4) |
|
7.6 Selection of Pole Locations for Good Design |
|
|
477 | (12) |
|
7.6.1 Dominant Second-Order Poles |
|
|
477 | (2) |
|
7.6.2 Symmetric Root Locus (SRL) |
|
|
479 | (9) |
|
7.6.3 Comments on the Methods |
|
|
488 | (1) |
|
|
489 | (12) |
|
7.7.1 Full-Order Estimators |
|
|
489 | (6) |
|
7.7.2 Reduced-Order Estimators |
|
|
495 | (4) |
|
7.7.3 Estimator Pole Selection |
|
|
499 | (2) |
|
7.8 Compensator Design: Combined Control Law and Estimator (W) |
|
|
501 | (13) |
|
7.9 Introduction of the Reference Input with the Estimator (W) |
|
|
514 | (11) |
|
7.9.1 General Structure for the Reference Input |
|
|
515 | (9) |
|
|
524 | (1) |
|
7.10 Integral Control and Robust Tracking |
|
|
525 | (34) |
|
|
526 | (2) |
|
7.10.2 Robust Tracking Control: The Error-Space Approach |
|
|
528 | (11) |
|
7.10.3 Model-Following Design |
|
|
539 | (4) |
|
7.10.4 The Extended Estimator |
|
|
543 | (4) |
|
7.11 Loop Transfer Recovery |
|
|
547 | (5) |
|
7.12 Direct Design with Rational Transfer Functions |
|
|
552 | (4) |
|
7.13 Design for Systems with Pure Time Delay |
|
|
556 | (3) |
|
7.14 Solution of State Equations (W) |
|
|
559 | (1) |
|
7.15 Historical Perspective |
|
|
559 | (31) |
|
|
562 | (3) |
|
|
565 | (1) |
|
|
566 | (24) |
|
|
590 | (47) |
|
A Perspective on Digital Control |
|
|
590 | (1) |
|
|
591 | (1) |
|
|
591 | (3) |
|
8.2 Dynamic Analysis of Discrete Systems |
|
|
594 | (7) |
|
|
594 | (1) |
|
8.2.2 z-Transform Inversion |
|
|
595 | (2) |
|
8.2.3 Relationship Between s and z |
|
|
597 | (2) |
|
8.2.4 Final Value Theorem |
|
|
599 | (2) |
|
8.3 Design Using Discrete Equivalents |
|
|
601 | (12) |
|
|
602 | (3) |
|
8.3.2 Zero-Order Hold (ZOH) Method |
|
|
605 | (2) |
|
8.3.3 Matched Pole-Zero (MPZ) Method |
|
|
607 | (4) |
|
8.3.4 Modified Matched Pole--Zero (MMPZ)> Method |
|
|
611 | (1) |
|
8.3.5 Comparison of Digital Approximation Methods |
|
|
612 | (1) |
|
8.3.6 Applicability Limits of the Discrete Equivalent Design Method |
|
|
613 | (1) |
|
8.4 Hardware Characteristics |
|
|
613 | (4) |
|
8.4.1 Analog-to-Digital (A/D) Converters |
|
|
614 | (1) |
|
8.4.2 Digital-to-Analog Converters |
|
|
614 | (1) |
|
8.4.3 Anti-Alias Prefilters |
|
|
615 | (1) |
|
|
616 | (1) |
|
8.5 Sample-Rate Selection |
|
|
617 | (11) |
|
8.5.1 Tracking Effectiveness |
|
|
618 | (1) |
|
8.5.2 Disturbance Rejection |
|
|
618 | (1) |
|
8.5.3 Effect of Anti-Alias Prefilter |
|
|
619 | (1) |
|
8.5.4 Asynchronous Sampling |
|
|
620 | (1) |
|
|
620 | (1) |
|
|
621 | (1) |
|
8.6.2 Feedback Properties |
|
|
622 | (1) |
|
8.6.3 Discrete Design Example |
|
|
623 | (3) |
|
8.6.4 Discrete Analysis of Designs |
|
|
626 | (2) |
|
8.7 Discrete State-Space Design Methods (W) |
|
|
628 | (1) |
|
8.8 Historical Perspective |
|
|
628 | (9) |
|
|
629 | (2) |
|
|
631 | (1) |
|
|
631 | (6) |
|
|
637 | (66) |
|
A Perspective on Nonlinear Systems |
|
|
637 | (1) |
|
|
638 | (1) |
|
9.1 Introduction and Motivation: Why Study Nonlinear Systems? |
|
|
639 | (2) |
|
9.2 Analysis by Linearization |
|
|
641 | (7) |
|
9.2.1 Linearization by Small-Signal Analysis |
|
|
641 | (5) |
|
9.2.2 Linearization by Nonlinear Feedback |
|
|
646 | (1) |
|
9.2.3 Linearization by Inverse Nonlinearity |
|
|
647 | (1) |
|
9.3 Equivalent Gain Analysis Using the Root Locus |
|
|
648 | (10) |
|
9.3.1 Integrator Antiwindup |
|
|
655 | (3) |
|
9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions |
|
|
658 | (32) |
|
9.4.1 Stability Analysis Using Describing Functions |
|
|
665 | (5) |
|
9.5 Analysis and Design Based on Stability |
|
|
670 | (1) |
|
|
670 | (7) |
|
9.5.2 Lyapunov Stability Analysis |
|
|
677 | (6) |
|
9.5.3 The Circle Criterion |
|
|
683 | (7) |
|
9.6 Historical Perspective |
|
|
690 | (13) |
|
|
691 | (1) |
|
|
691 | (1) |
|
|
692 | (11) |
|
10 Control System Design: Principles and Case Studies |
|
|
703 | (101) |
|
A Perspective on Design Principles |
|
|
703 | (1) |
|
|
704 | (1) |
|
10.1 An Outline of Control Systems |
|
|
|
|
705 | (6) |
|
10.2 Design of a Satellite's Attitude Control |
|
|
711 | (18) |
|
10.3 Lateral and Longitudinal Control of a Boeing 747 |
|
|
729 | (4) |
|
|
733 | (8) |
|
10.3.2 Altitude-Hold Autopilot |
|
|
741 | (6) |
|
10.4 Control of the Fuel-Air Ratio in an Automotive Engine |
|
|
747 | (8) |
|
10.5 Control of the Read/Write Head Assembly of a Hard Disk |
|
|
755 | (8) |
|
10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing |
|
|
763 | (14) |
|
10.7 Chemotaxis or How E. Coli Swims Away from Trouble |
|
|
777 | (9) |
|
10.8 Historical Perspective |
|
|
786 | (18) |
|
|
788 | (2) |
|
|
790 | (1) |
|
|
790 | (14) |
|
Appendix A Laplace Transforms |
|
|
804 | (15) |
|
A.1 The L_ Laplace Transform |
|
|
804 | (15) |
|
A.1.1 Properties of Laplace Transforms |
|
|
805 | (8) |
|
A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion |
|
|
813 | (3) |
|
A.1.3 The Initial Value Theorem |
|
|
816 | (1) |
|
A.1.4 Final Value Theorem |
|
|
817 | (2) |
|
Appendix B Solutions to the Review Questions |
|
|
819 | (16) |
|
Appendix C Matlab Commands |
|
|
835 | (5) |
Bibliography |
|
840 | (8) |
Index |
|
848 | |