Muutke küpsiste eelistusi

Feedback Control of Dynamic Systems 7th edition [Kõva köide]

  • Formaat: Hardback, 880 pages, kõrgus x laius: 232x178 mm, kaal: 1200 g
  • Ilmumisaeg: 18-Jun-2014
  • Kirjastus: Pearson
  • ISBN-10: 0133496597
  • ISBN-13: 9780133496598
Teised raamatud teemal:
  • Kõva köide
  • Hind: 255,01 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 880 pages, kõrgus x laius: 232x178 mm, kaal: 1200 g
  • Ilmumisaeg: 18-Jun-2014
  • Kirjastus: Pearson
  • ISBN-10: 0133496597
  • ISBN-13: 9780133496598
Teised raamatud teemal:
Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback controlincluding concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout.

¿

Teaching and Learning Experience

This program will provide a better teaching and learning experiencefor you and your students. It will provide:

¿





An Understandable Introduction to Digital Control: This text is devoted to supporting students equally in their need to grasp both traditional and more modern topics of digital control. Real-world Perspective: Comprehensive Case Studies and extensive integrated MATLAB/SIMULINK examples illustrate real-world problems and applications. Focus on Design: The authors focus on design as a theme early on and throughout the entire book, rather than focusing on analysis first and design much later.
Preface xiii
1 An Overview and Brief History of Feedback Control
1(22)
A Perspective on Feedback Control
1(1)
Chapter Overview
2(1)
1.1 A Simple Feedback System
3(3)
1.2 A First Analysis of Feedback
6(4)
1.3 Feedback System Fundamentals
10(1)
1.4 A Brief History
11(6)
1.5 An Overview of the Book
17(6)
Summary
19(1)
Review Questions
19(1)
Problems
20(3)
2 Dynamic Models
23(61)
A Perspective on Dynamic Models
23(1)
Chapter Overview
24(1)
2.1 Dynamics of Mechanical Systems
24(21)
2.1.1 Translational Motion
24(7)
2.1.2 Rotational Motion
31(8)
2.1.3 Combined Rotation and Translation
39(3)
2.1.4 Complex Mechanical Systems (W)**
42(1)
2.1.5 Distributed Parameter Systems
42(2)
2.1.6 Summary: Developing Equations of Motion for Rigid Bodies
44(1)
2.2 Models of Electric Circuits
45(5)
2.3 Models of Electromechanical Systems
50(18)
2.3.1 Loudspeakers
50(2)
2.3.2 Motors
52(4)
2.3.3 Gears
56(1)
2.4 Heat and Fluid-Flow Models
57(1)
2.4.1 Heat Flow
58(3)
2.4.2 Incompressible Fluid Flow
61(7)
2.5 Historical Perspective
68(16)
Summary
71(1)
Review Questions
71(1)
Problems
72(12)
3 Dynamic Response
84(96)
A Perspective on System Response
84(1)
Chapter Overview
85(1)
3.1 Review of Laplace Transforms
85(33)
3.1.1 Response by Convolution
86(5)
3.1.2 Transfer Functions and Frequency Response
91(10)
3.1.3 The L_ Laplace Transform
101(2)
3.1.4 Properties of Laplace Transforms
103(2)
3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion
105(2)
3.1.6 The Final Value Theorem
107(2)
3.1.7 Using Laplace Transforms to Solve Differential Equations
109(2)
3.1.8 Poles and Zeros
111(1)
3.1.9 Linear System Analysis Using Matlab®
112(6)
3.2 System Modeling Diagrams
118(5)
3.2.1 The Block Diagram
118(4)
3.2.2 Block-Diagram Reduction Using Matlab
122(1)
3.2.3 Mason's Rule and the Signal Flow Graph (W)
123(1)
3.3 Effect of Pole Locations
123(8)
3.4 Time-Domain Specifications
131(6)
3.4.1 Rise Time
132(1)
3.4.2 Overshoot and Peak Time
132(2)
3.4.3 Settling Time
134(3)
3.5 Effects of Zeros and Additional Poles
137(9)
3.6 Stability
146(10)
3.6.1 Bounded Input-Bounded Output Stability
147(1)
3.6.2 Stability of LTI Systems
148(1)
3.6.3 Routh's Stability Criterion
149(7)
3.7 Obtaining Models from Experimental Data: System Identification (W)
156(1)
3.8 Amplitude and Time Scaling (W)
156(1)
3.9 Historical Perspective
156(24)
Summary
157(2)
Review Questions
159(1)
Problems
159(21)
4 A First Analysis of Feedback
180(54)
A Perspective on the Analysis of Feedback
180(1)
Chapter Overview
181(1)
4.1 The Basic Equations of Control
182(6)
4.1.1 Stability
183(1)
4.1.2 Tracking
184(1)
4.1.3 Regulation
185(1)
4.1.4 Sensitivity
186(2)
4.2 Control of Steady-State Error to Polynomial Inputs: System Type
188(8)
4.2.1 System Type for Tracking
189(5)
4.2.2 System Type for Regulation and Disturbance Rejection
194(2)
4.3 The Three-Term Controller: PID Control
196(16)
4.3.1 Proportional Control (P)
196(2)
4.3.2 Integral Control (I)
198(3)
4.3.3 Derivative Control (D)
201(1)
4.3.4 Proportional Plus Integral Control (PI)
201(1)
4.3.5 PID Control
202(4)
4.3.6 Ziegler--Nichols Tuning of the PID
Controller
206(6)
4.4 Feedforward Control by Plant Model Inversion
212(3)
4.5 Introduction to Digital Control (W)
214(1)
4.6 Sensitivity of Time Response to Parameter Change (W)
215(1)
4.7 Historical Perspective
215(19)
Summary
217(1)
Review Questions
218(1)
Problems
218(16)
5 The Root-Locus Design Method
234(74)
A Perspective on the Root-Locus Design Method
234(1)
Chapter Overview
235(1)
5.1 Root Locus of a Basic Feedback System
235(5)
5.2 Guidelines for Determining a Root Locus
240(11)
5.2.1 Rules for Determining a Positive (180°)
Root Locus
242(6)
5.2.2 Summary of the Rules for Determining a Root Locus
248(1)
5.2.3 Selecting the Parameter Value
249(2)
5.3 Selected Illustrative Root Loci
251(13)
5.4 Design Using Dynamic Compensation
264(11)
5.4.1 Design Using Lead Compensation
266(4)
5.4.2 Design Using Lag Compensation
270(2)
5.4.3 Design Using Notch Compensation
272(2)
5.4.4 Analog and Digital Implementations (W)
274(1)
5.5 A Design Example Using the Root Locus
275(6)
5.6 Extensions of the Root-Locus Method
281(6)
5.6.1 Rules for Plotting a Negative (0°) Root Locus
281(3)
5.6.2 Consideration of Two Parameters
284(2)
5.6.3 Time Delay (W)
286(1)
5.7 Historical Perspective
287(21)
Summary
289(1)
Review Questions
290(1)
Problems
291(17)
6 The Frequency-Response Design Method
308(125)
A Perspective on the Frequency-Response Design Method
308(1)
Chapter Overview
309(1)
6.1 Frequency Response
309(22)
6.1.1 Bode Plot Techniques
317(13)
6.1.2 Steady-State Errors
330(1)
6.2 Neutral Stability
331(2)
6.3 The Nyquist Stability Criterion
333(15)
6.3.1 The Argument Principle
334(1)
6.3.2 Application of The Argument Principle to Control Design
335(13)
6.4 Stability Margins
348(9)
6.5 Bode's Gain--Phase Relationship
357(4)
6.6 Closed-Loop Frequency Response
361(2)
6.7 Compensation
363(41)
6.7.1 PD Compensation
363(1)
6.7.2 Lead Compensation (W)
364(10)
6.7.3 PI Compensation
374(1)
6.7.4 Lag Compensation
375(6)
6.7.5 PID Compensation
381(6)
6.7.6 Design Considerations
387(2)
6.7.7 Specifications in Terms of the Sensitivity Function
389(5)
6.7.8 Limitations on Design in Terms of the Sensitivity Function
394(4)
6.8 Time Delay
398(2)
6.8.1 Time Delay via the Nyquist Diagram (W)
400(1)
6.9 Alternative Presentation of Data
400(1)
6.9.1 Nichols Chart
400(4)
6.9.2 The Inverse Nyquist Diagram (W)
404(1)
6.10 Historical Perspective
404(29)
Summary
405(3)
Review Questions
408(1)
Problems
408(25)
7 State-Space Design
433(157)
A Perspective on State-Space Design
433(1)
Chapter Overview
434(1)
7.1 Advantages of State-Space
434(2)
7.2 System Description in State-Space
436(6)
7.3 Block Diagrams and State-Space
442(2)
7.4 Analysis of the State Equations
444(19)
7.4.1 Block Diagrams and Canonical Forms
445(12)
7.4.2 Dynamic Response from the State
Equations
457(6)
7.5 Control-Law Design for Full-State Feedback
463(14)
7.5.1 Finding the Control Law
464(9)
7.5.2 Introducing the Reference Input with Full-State Feedback
473(4)
7.6 Selection of Pole Locations for Good Design
477(12)
7.6.1 Dominant Second-Order Poles
477(2)
7.6.2 Symmetric Root Locus (SRL)
479(9)
7.6.3 Comments on the Methods
488(1)
7.7 Estimator Design
489(12)
7.7.1 Full-Order Estimators
489(6)
7.7.2 Reduced-Order Estimators
495(4)
7.7.3 Estimator Pole Selection
499(2)
7.8 Compensator Design: Combined Control Law and Estimator (W)
501(13)
7.9 Introduction of the Reference Input with the Estimator (W)
514(11)
7.9.1 General Structure for the Reference Input
515(9)
7.9.2 Selecting the Gain
524(1)
7.10 Integral Control and Robust Tracking
525(34)
7.10.1 Integral Control
526(2)
7.10.2 Robust Tracking Control: The Error-Space Approach
528(11)
7.10.3 Model-Following Design
539(4)
7.10.4 The Extended Estimator
543(4)
7.11 Loop Transfer Recovery
547(5)
7.12 Direct Design with Rational Transfer Functions
552(4)
7.13 Design for Systems with Pure Time Delay
556(3)
7.14 Solution of State Equations (W)
559(1)
7.15 Historical Perspective
559(31)
Summary
562(3)
Review Questions
565(1)
Problems
566(24)
8 Digital Control
590(47)
A Perspective on Digital Control
590(1)
Chapter Overview
591(1)
8.1 Digitization
591(3)
8.2 Dynamic Analysis of Discrete Systems
594(7)
8.2.1 z-Transform
594(1)
8.2.2 z-Transform Inversion
595(2)
8.2.3 Relationship Between s and z
597(2)
8.2.4 Final Value Theorem
599(2)
8.3 Design Using Discrete Equivalents
601(12)
8.3.1 Tustin's Method
602(3)
8.3.2 Zero-Order Hold (ZOH) Method
605(2)
8.3.3 Matched Pole-Zero (MPZ) Method
607(4)
8.3.4 Modified Matched Pole--Zero (MMPZ)> Method
611(1)
8.3.5 Comparison of Digital Approximation Methods
612(1)
8.3.6 Applicability Limits of the Discrete Equivalent Design Method
613(1)
8.4 Hardware Characteristics
613(4)
8.4.1 Analog-to-Digital (A/D) Converters
614(1)
8.4.2 Digital-to-Analog Converters
614(1)
8.4.3 Anti-Alias Prefilters
615(1)
8.4.4 The Computer
616(1)
8.5 Sample-Rate Selection
617(11)
8.5.1 Tracking Effectiveness
618(1)
8.5.2 Disturbance Rejection
618(1)
8.5.3 Effect of Anti-Alias Prefilter
619(1)
8.5.4 Asynchronous Sampling
620(1)
8.6 Discrete Design
620(1)
8.6.1 Analysis Tools
621(1)
8.6.2 Feedback Properties
622(1)
8.6.3 Discrete Design Example
623(3)
8.6.4 Discrete Analysis of Designs
626(2)
8.7 Discrete State-Space Design Methods (W)
628(1)
8.8 Historical Perspective
628(9)
Summary
629(2)
Review Questions
631(1)
Problems
631(6)
9 Nonlinear Systems
637(66)
A Perspective on Nonlinear Systems
637(1)
Chapter Overview
638(1)
9.1 Introduction and Motivation: Why Study Nonlinear Systems?
639(2)
9.2 Analysis by Linearization
641(7)
9.2.1 Linearization by Small-Signal Analysis
641(5)
9.2.2 Linearization by Nonlinear Feedback
646(1)
9.2.3 Linearization by Inverse Nonlinearity
647(1)
9.3 Equivalent Gain Analysis Using the Root Locus
648(10)
9.3.1 Integrator Antiwindup
655(3)
9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
658(32)
9.4.1 Stability Analysis Using Describing Functions
665(5)
9.5 Analysis and Design Based on Stability
670(1)
9.5.1 The Phase Plane
670(7)
9.5.2 Lyapunov Stability Analysis
677(6)
9.5.3 The Circle Criterion
683(7)
9.6 Historical Perspective
690(13)
Summary
691(1)
Review Questions
691(1)
Problems
692(11)
10 Control System Design: Principles and Case Studies
703(101)
A Perspective on Design Principles
703(1)
Chapter Overview
704(1)
10.1 An Outline of Control Systems
Design
705(6)
10.2 Design of a Satellite's Attitude Control
711(18)
10.3 Lateral and Longitudinal Control of a Boeing 747
729(4)
10.3.1 Yaw Damper
733(8)
10.3.2 Altitude-Hold Autopilot
741(6)
10.4 Control of the Fuel-Air Ratio in an Automotive Engine
747(8)
10.5 Control of the Read/Write Head Assembly of a Hard Disk
755(8)
10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing
763(14)
10.7 Chemotaxis or How E. Coli Swims Away from Trouble
777(9)
10.8 Historical Perspective
786(18)
Summary
788(2)
Review Questions
790(1)
Problems
790(14)
Appendix A Laplace Transforms
804(15)
A.1 The L_ Laplace Transform
804(15)
A.1.1 Properties of Laplace Transforms
805(8)
A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion
813(3)
A.1.3 The Initial Value Theorem
816(1)
A.1.4 Final Value Theorem
817(2)
Appendix B Solutions to the Review Questions
819(16)
Appendix C Matlab Commands
835(5)
Bibliography 840(8)
Index 848