Muutke küpsiste eelistusi

Fiber Optic Sensors Based On Plasmonics [Kõva köide]

(Indian Inst Of Technology Delhi, India), (Ilse Katz Inst Of Nanoscale Science & Technology, Israel), (Indian Inst Of Technology Delhi, India)
  • Formaat: Hardback, 284 pages
  • Ilmumisaeg: 10-Jul-2015
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981461954X
  • ISBN-13: 9789814619547
  • Formaat: Hardback, 284 pages
  • Ilmumisaeg: 10-Jul-2015
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 981461954X
  • ISBN-13: 9789814619547
The book provides an introduction of surface plasmons and presents its applications in the sensing of various chemical and biological analyses using optical fiber technology. The field is developed by introducing the surface plasmons for semi-infinite metal–dielectric interface with discussion of their propagation length and penetration depth. Practical issues with the excitation of surface plasmons in different configurations and in various geometries including various means of their excitation have also been included. The book discusses the essential components of fiber optic sensors, their functions and the performance parameters along with the theoretical description of fiber optic Surface Plasmon Resonance (SPR) sensors with respect to various light launching conditions. The fabrication methods and protocols used for the fabrication of the fiber optic SPR chemical and biosensors have been described. Some fiber optic sensing applications based on SPR phenomena and various issues, such as sensitivity enhancement, influence of external stimuli etc, have been an important part of the book.The book will help beginners as well as established researchers in understanding the fundamentals and advancements of optical fiber plasmonic sensor technology. The book contains both the rigorous theory and the experimental techniques of SPR and related variety of sensors.
Preface v
Acknowledgements vii
1 Introduction 1(20)
1.1 Surface Plasmons: Historical Perspective
1(2)
1.2 Kretschmann and Otto Configurations
3(1)
1.3 Fiber Optic SPR Sensor Developments
4(9)
1.4 Overview of the Book
13(1)
References
14(7)
2 Physics of Plasmons 21(34)
2.1 Introduction
21(2)
2.2 SPs at Semi-Infinite Metal-Dielectric Interface
23(8)
2.2.1 Non-existence of SPs for TE modes
25(1)
2.2.2 Existence of SPs for TM modes
25(3)
2.2.3 Field
28(1)
2.2.4 Penetration depth
29(1)
2.2.5 Propagation length
30(1)
2.3 Excitation of SPs
31(10)
2.3.1 Prism-based method
31(6)
2.3.2 Waveguide-based method
37(2)
2.3.3 Grating-based method
39(2)
2.4 SP Modes of a Thin Metal Film
41(1)
2.5 Long and Short Range Surface Plasmons
42(1)
2.6 Nearly Guided Wave SPR (NGWSPR)
43(2)
2.7 Interrogation Techniques
45(6)
2.7.1 Angular interrogation
46(1)
2.7.2 Spectral interrogation
47(2)
2.7.3 Intensity interrogation
49(1)
2.7.4 Phase interrogation
50(1)
2.8 SPR Imaging (SPRI)
51(1)
2.9 Summary
52(1)
References
53(2)
3 Characteristics and Components of Fiber Optic Sensor 55(38)
3.1 Components of a Sensor and Their Functions
56(21)
3.1.1 Analyte/Sample
56(4)
3.1.2 Receptors
60(10)
3.1.2.1 Enzymatic receptors
61(3)
3.1.2.2 Antibody-based receptors
64(2)
3.1.2.2.1 Polyclonal antibody
64(1)
3.1.2.2.2 Monoclonal antibody
65(1)
3.1.2.3 Nucleic acid based receptors
66(1)
3.1.2.4 Cell-based receptors
67(2)
3.1.2.5 Tissue-based receptors
69(1)
3.1.3 Transducers
70(5)
3.1.3.1 Electrochemical
71(2)
3.1.3.1.1 Amperometric
72(1)
3.1.3.1.2 Conductometric
72(1)
3.1.3.1.3 Potentiometric
73(1)
3.1.3.2 Piezoelectric
73(1)
3.1.3.3 Thermometric
74(1)
3.1.3.4 Optical transducers
74(1)
3.1.4 Detector
75(2)
3.2 Optical Fiber
77(4)
3.2.1 TIR
78(1)
3.2.2 Light ray propagation in an optical fiber
79(1)
3.2.3 Numerical aperture
79(1)
3.2.4 Fiber modes
80(1)
3.3 Optical Fiber Sensors
81(3)
3.4 Performance Parameters
84(4)
3.4.1 Sensitivity
84(1)
3.4.2 Selectivity/Specificity
84(1)
3.4.3 Limit of detection
85(1)
3.4.4 Accuracy
85(1)
3.4.5 Resolution
85(1)
3.4.6 Repeatability
85(1)
3.4.7 Reproducibility
86(1)
3.4.8 Noise
86(1)
3.4.9 Range
86(1)
3.4.10 Response time
87(1)
3.4.11 Linearity
87(1)
3.4.12 Drift
87(1)
3.4.13 Figure of merit
87(1)
3.5 Summary
88(1)
References
88(5)
4 Theory of SPR-based Optical Fiber Sensor 93(26)
4.1 Introduction
93(3)
4.2 N-Layer Model
96(6)
4.3 Excitation by Meridional Rays: On Axis Excitation
102(6)
4.4 Excitation by Skew Rays: Off Axis Excitation
108(4)
4.5 Diffuse Source
112(2)
4.6 Performance Parameters: Sensitivity, Detection Accuracy, and Figure of Merit (FOM)
114(3)
4.7 Summary
117(1)
References
118(1)
5 Fabrication and Functionalization Methods 119(36)
5.1 Sensing Elements
120(7)
5.1.1 Sensor surface
120(7)
5.1.1.1 Preparation of the fiber probe
120(1)
5.1.1.2 Coating of the metal layer
121(5)
5.1.1.3 Criterion for support selection
126(1)
5.2 Immobilization Techniques
127(12)
5.2.1 Covalent binding
128(4)
5.2.1.1 Thiol bonding
129(1)
5.2.1.2 Disulfide bonding
129(1)
5.2.1.3 Metal binding
129(1)
5.2.1.4 Silanization
130(2)
5.2.2 Entrapment
132(1)
5.2.3 Encapsulation
133(2)
5.2.4 Cross linking
135(1)
5.2.5 Adsorption
136(3)
5.3 Molecular Imprinting
139(2)
5.3.1 Covalent molecular imprinting
140(1)
5.3.2 Non-covalent molecular imprinting
140(1)
5.4 Advantages and Disadvantages of Molecular Imprinting
141(2)
5.4.1 Covalent imprinting
141(1)
5.4.2 Non-covalent imprinting
142(1)
5.5 Graphene Functionalized Receptors
143(3)
5.6 Summary
146(1)
References
147(8)
6 SPR based Sensing Applications 155(62)
6.1 Introduction
155(2)
6.2 Refractive Index Sensor
157(6)
6.2.1 Effect of oxide layers
159(2)
6.2.2 Multi-channel sensing
161(2)
6.3 pH Sensor
163(8)
6.3.1 Silver/silicon/hydrogel based pH sensor
167(2)
6.3.2 Silver/indium tin oxide/aluminium/hydrogel based pH sensor
169(2)
6.4 Ethanol Sensor
171(3)
6.5 Enzyme based Sensors
174(13)
6.5.1 Urea sensor
175(3)
6.5.2 Naringin sensor
178(1)
6.5.3 Organophosphate pesticide
178(1)
6.5.4 Phenolic compounds
179(3)
6.5.5 Glucose sensor
182(3)
6.5.6 Low density lipoprotein sensor
185(2)
6.6 Molecular Imprinting based Sensors
187(10)
6.6.1 Vitamin B3 sensor
188(1)
6.6.2 Tetracycline sensor
189(8)
6.7 Multi-analyte Sensing
197(6)
6.8 Gas Sensors
203(10)
6.8.1 Ammonia gas sensor
204(3)
6.8.2 Hydrogen sulphide gas sensor
207(6)
6.9 Summary
213(1)
References
213(4)
7 SPR based Fiber Optic Sensors: Factors Affecting Performance 217(34)
7.1 Introduction
217(1)
7.2 Influence of Intrinsic Stimuli
217(26)
7.2.1 Fiber parameters
217(6)
7.2.1.1 Core diameter
218(1)
7.2.1.2 Sensing length
219(2)
7.2.1.3 Numerical aperture
221(2)
7.2.2 Change of metal
223(4)
7.2.3 Influence of dopants in fiber core
227(1)
7.2.4 Role of high index dielectric layer
227(7)
7.2.5 Probe design
234(9)
7.2.5.1 Tapered probe
234(5)
7.2.5.2 U-shaped probe
239(4)
7.3 Influence of Extrinsic Stimuli
243(5)
7.3.1 Influence of temperature
243(2)
7.3.2 Influence of ions
245(3)
7.4 Summary
248(1)
References
249(2)
8 Future Scope of Research 251(4)
Appendix A Dispersion Relations of Dielectric Materials and Metals 255(6)
A.1 Optical Absorption
255(1)
A.2 Dispersion Relations: Dielectrics and Metals
255(6)
A.2.1 Dielectrics: Lorentz model of damped oscillators
256(2)
A.2.2 Metals: Drude model
258(3)
Appendix B List of Constants 261(4)
B.1 Sellmeier Relation
261(1)
B.2 Plasma and Collision Wavelengths for Plasmonic Metals
261(1)
B.3 Dispersion Relations of Various Dielectric Materials and Metal Oxides
262(3)
Index 265