Preface |
|
v | |
Acknowledgements |
|
vii | |
1 Introduction |
|
1 | (20) |
|
1.1 Surface Plasmons: Historical Perspective |
|
|
1 | (2) |
|
1.2 Kretschmann and Otto Configurations |
|
|
3 | (1) |
|
1.3 Fiber Optic SPR Sensor Developments |
|
|
4 | (9) |
|
|
13 | (1) |
|
|
14 | (7) |
2 Physics of Plasmons |
|
21 | (34) |
|
|
21 | (2) |
|
2.2 SPs at Semi-Infinite Metal-Dielectric Interface |
|
|
23 | (8) |
|
2.2.1 Non-existence of SPs for TE modes |
|
|
25 | (1) |
|
2.2.2 Existence of SPs for TM modes |
|
|
25 | (3) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (10) |
|
|
31 | (6) |
|
2.3.2 Waveguide-based method |
|
|
37 | (2) |
|
2.3.3 Grating-based method |
|
|
39 | (2) |
|
2.4 SP Modes of a Thin Metal Film |
|
|
41 | (1) |
|
2.5 Long and Short Range Surface Plasmons |
|
|
42 | (1) |
|
2.6 Nearly Guided Wave SPR (NGWSPR) |
|
|
43 | (2) |
|
2.7 Interrogation Techniques |
|
|
45 | (6) |
|
2.7.1 Angular interrogation |
|
|
46 | (1) |
|
2.7.2 Spectral interrogation |
|
|
47 | (2) |
|
2.7.3 Intensity interrogation |
|
|
49 | (1) |
|
2.7.4 Phase interrogation |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
3 Characteristics and Components of Fiber Optic Sensor |
|
55 | (38) |
|
3.1 Components of a Sensor and Their Functions |
|
|
56 | (21) |
|
|
56 | (4) |
|
|
60 | (10) |
|
3.1.2.1 Enzymatic receptors |
|
|
61 | (3) |
|
3.1.2.2 Antibody-based receptors |
|
|
64 | (2) |
|
3.1.2.2.1 Polyclonal antibody |
|
|
64 | (1) |
|
3.1.2.2.2 Monoclonal antibody |
|
|
65 | (1) |
|
3.1.2.3 Nucleic acid based receptors |
|
|
66 | (1) |
|
3.1.2.4 Cell-based receptors |
|
|
67 | (2) |
|
3.1.2.5 Tissue-based receptors |
|
|
69 | (1) |
|
|
70 | (5) |
|
|
71 | (2) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
3.1.3.4 Optical transducers |
|
|
74 | (1) |
|
|
75 | (2) |
|
|
77 | (4) |
|
|
78 | (1) |
|
3.2.2 Light ray propagation in an optical fiber |
|
|
79 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
3.3 Optical Fiber Sensors |
|
|
81 | (3) |
|
3.4 Performance Parameters |
|
|
84 | (4) |
|
|
84 | (1) |
|
3.4.2 Selectivity/Specificity |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (5) |
4 Theory of SPR-based Optical Fiber Sensor |
|
93 | (26) |
|
|
93 | (3) |
|
|
96 | (6) |
|
4.3 Excitation by Meridional Rays: On Axis Excitation |
|
|
102 | (6) |
|
4.4 Excitation by Skew Rays: Off Axis Excitation |
|
|
108 | (4) |
|
|
112 | (2) |
|
4.6 Performance Parameters: Sensitivity, Detection Accuracy, and Figure of Merit (FOM) |
|
|
114 | (3) |
|
|
117 | (1) |
|
|
118 | (1) |
5 Fabrication and Functionalization Methods |
|
119 | (36) |
|
|
120 | (7) |
|
|
120 | (7) |
|
5.1.1.1 Preparation of the fiber probe |
|
|
120 | (1) |
|
5.1.1.2 Coating of the metal layer |
|
|
121 | (5) |
|
5.1.1.3 Criterion for support selection |
|
|
126 | (1) |
|
5.2 Immobilization Techniques |
|
|
127 | (12) |
|
|
128 | (4) |
|
|
129 | (1) |
|
5.2.1.2 Disulfide bonding |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (1) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
139 | (2) |
|
5.3.1 Covalent molecular imprinting |
|
|
140 | (1) |
|
5.3.2 Non-covalent molecular imprinting |
|
|
140 | (1) |
|
5.4 Advantages and Disadvantages of Molecular Imprinting |
|
|
141 | (2) |
|
5.4.1 Covalent imprinting |
|
|
141 | (1) |
|
5.4.2 Non-covalent imprinting |
|
|
142 | (1) |
|
5.5 Graphene Functionalized Receptors |
|
|
143 | (3) |
|
|
146 | (1) |
|
|
147 | (8) |
6 SPR based Sensing Applications |
|
155 | (62) |
|
|
155 | (2) |
|
6.2 Refractive Index Sensor |
|
|
157 | (6) |
|
6.2.1 Effect of oxide layers |
|
|
159 | (2) |
|
6.2.2 Multi-channel sensing |
|
|
161 | (2) |
|
|
163 | (8) |
|
6.3.1 Silver/silicon/hydrogel based pH sensor |
|
|
167 | (2) |
|
6.3.2 Silver/indium tin oxide/aluminium/hydrogel based pH sensor |
|
|
169 | (2) |
|
|
171 | (3) |
|
|
174 | (13) |
|
|
175 | (3) |
|
|
178 | (1) |
|
6.5.3 Organophosphate pesticide |
|
|
178 | (1) |
|
|
179 | (3) |
|
|
182 | (3) |
|
6.5.6 Low density lipoprotein sensor |
|
|
185 | (2) |
|
6.6 Molecular Imprinting based Sensors |
|
|
187 | (10) |
|
|
188 | (1) |
|
6.6.2 Tetracycline sensor |
|
|
189 | (8) |
|
6.7 Multi-analyte Sensing |
|
|
197 | (6) |
|
|
203 | (10) |
|
|
204 | (3) |
|
6.8.2 Hydrogen sulphide gas sensor |
|
|
207 | (6) |
|
|
213 | (1) |
|
|
213 | (4) |
7 SPR based Fiber Optic Sensors: Factors Affecting Performance |
|
217 | (34) |
|
|
217 | (1) |
|
7.2 Influence of Intrinsic Stimuli |
|
|
217 | (26) |
|
|
217 | (6) |
|
|
218 | (1) |
|
|
219 | (2) |
|
7.2.1.3 Numerical aperture |
|
|
221 | (2) |
|
|
223 | (4) |
|
7.2.3 Influence of dopants in fiber core |
|
|
227 | (1) |
|
7.2.4 Role of high index dielectric layer |
|
|
227 | (7) |
|
|
234 | (9) |
|
|
234 | (5) |
|
|
239 | (4) |
|
7.3 Influence of Extrinsic Stimuli |
|
|
243 | (5) |
|
7.3.1 Influence of temperature |
|
|
243 | (2) |
|
|
245 | (3) |
|
|
248 | (1) |
|
|
249 | (2) |
8 Future Scope of Research |
|
251 | (4) |
Appendix A Dispersion Relations of Dielectric Materials and Metals |
|
255 | (6) |
|
|
255 | (1) |
|
A.2 Dispersion Relations: Dielectrics and Metals |
|
|
255 | (6) |
|
A.2.1 Dielectrics: Lorentz model of damped oscillators |
|
|
256 | (2) |
|
A.2.2 Metals: Drude model |
|
|
258 | (3) |
Appendix B List of Constants |
|
261 | (4) |
|
|
261 | (1) |
|
B.2 Plasma and Collision Wavelengths for Plasmonic Metals |
|
|
261 | (1) |
|
B.3 Dispersion Relations of Various Dielectric Materials and Metal Oxides |
|
|
262 | (3) |
Index |
|
265 | |