Summary |
|
XIII | |
1 Introduction |
|
1 | |
2 Bayesian Statistics and MCMC Methods |
|
9 | |
|
|
9 | |
|
|
10 | |
|
|
11 | |
|
2.2.2 The Metropolis-Hastings algorithm |
|
|
12 | |
|
2.2.3 Dealing with the MCMC output |
|
|
13 | |
3 Bayesian Estimation of the GARCH(1, 1) Model with Normal Innovations |
|
17 | |
|
3.1 The model and the priors |
|
|
17 | |
|
3.2 Simulating the joint posterior |
|
|
18 | |
|
3.2.1 Generating vector α |
|
|
20 | |
|
3.2.2 Generating parameter β |
|
|
20 | |
|
|
22 | |
|
|
24 | |
|
3.3.2 Sensitivity analysis |
|
|
30 | |
|
|
32 | |
|
3.4 Illustrative applications |
|
|
34 | |
|
|
34 | |
|
|
36 | |
4 Bayesian Estimation of the Linear Regression Model with Normal-GJR(1, 1) Errors |
|
39 | |
|
4.1 The model and the priors |
|
|
40 | |
|
4.2 Simulating the joint posterior |
|
|
41 | |
|
4.2.1 Generating vector γ |
|
|
41 | |
|
4.2.2 Generating the GJR parameters |
|
|
42 | |
|
|
43 | |
|
|
44 | |
|
|
44 | |
|
|
46 | |
|
4.3.2 Sensitivity analysis |
|
|
52 | |
|
|
52 | |
|
4.4 Illustrative applications |
|
|
53 | |
5 Bayesian Estimation of the Linear Regression Model with Student-t-GJR(1, 1) Errors |
|
55 | |
|
5.1 The model and the priors |
|
|
56 | |
|
5.2 Simulating the joint posterior |
|
|
59 | |
|
5.2.1 Generating vector γ |
|
|
59 | |
|
5.2.2 Generating the GJR parameters |
|
|
60 | |
|
|
61 | |
|
|
62 | |
|
|
62 | |
|
5.2.4 Generating parameter ν |
|
|
63 | |
|
|
64 | |
|
|
64 | |
|
5.3.2 Sensitivity analysis |
|
|
70 | |
|
|
70 | |
|
5.4 Illustrative applications |
|
|
71 | |
6 Value at Risk and Decision Theory |
|
73 | |
|
|
73 | |
|
6.2 The concept of Value at Risk |
|
|
76 | |
|
6.2.1 The one-day ahead VaR under the GARCH(1, 1) dynamics |
|
|
77 | |
|
6.2.2 The s-day ahead VaR, under the GARCH(1, 1) dynamics |
|
|
77 | |
|
|
85 | |
|
6.3.1 Bayes point estimate |
|
|
85 | |
|
6.3.2 The Linex loss function |
|
|
86 | |
|
6.3.3 The Monomial loss function |
|
|
90 | |
|
6.4 Empirical application: the VaR, term structure |
|
|
91 | |
|
6.4.1 Data set and estimation design |
|
|
92 | |
|
6.4.2 Bayesian estimation |
|
|
94 | |
|
6.4.3 The term structure of the VaR density |
|
|
95 | |
|
6.4.4 VaR. point estimates |
|
|
96 | |
|
|
100 | |
|
6.4.6 Forecasting performance analysis |
|
|
102 | |
|
6.5 The Expected Shortfall risk measure |
|
|
104 | |
7 Bayesian Estimation of the Markov-Switching GJR(1, 1) Model with Student-t Innovations |
|
109 | |
|
7.1 The model and the priors |
|
|
111 | |
|
7.2 Simulating the joint posterior |
|
|
115 | |
|
7.2.1 Generating vector s |
|
|
117 | |
|
7.2.2 Generating matrix P |
|
|
118 | |
|
7.2.3 Generating the GJR, parameters |
|
|
118 | |
|
|
120 | |
|
|
121 | |
|
|
122 | |
|
7.2.5 Generating parameter ν |
|
|
122 | |
|
7.3 An application to the Swiss Market Index |
|
|
122 | |
|
7.4 In-sample performance analysis |
|
|
133 | |
|
|
133 | |
|
7.4.2 Deviance information criterion |
|
|
134 | |
|
|
137 | |
|
7.5 Forecasting performance analysis |
|
|
144 | |
|
7.6 One-day ahead VaR density |
|
|
148 | |
|
7.7 Maximum Likelihood estimation |
|
|
152 | |
8 Conclusion |
|
155 | |
A Recursive Transformations |
|
161 | |
|
A.1 The GARCH(1, 1) model with Normal innovations |
|
|
161 | |
|
A.2 The GJR(1, 1) model with Normal innovations |
|
|
162 | |
|
A.3 The GJR(1, 1) model with Student-t innovations |
|
|
163 | |
B Equivalent Specification |
|
165 | |
C Conditional Moments |
|
171 | |
Computational Details |
|
179 | |
Abbreviations and Notations |
|
181 | |
List of Tables |
|
187 | |
List of Figures |
|
189 | |
References |
|
191 | |
Index |
|
201 | |