Muutke küpsiste eelistusi

Finite Element Method in Charged Particle Optics Softcover reprint of the original 1st ed. 1999 [Pehme köide]

  • Pehme köide
  • Hind: 187,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 220,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
This multidisciplinary book is intended to serve as a reference for postgraduate students and researchers working in the fields of charged particle optics or other finite-element-related applications. It is also suitable for use as a graduate text. For the non-specialist in charged particle optics, the opening chapters provide an introduction to the kinds of field problems that occur in charged particle beam systems.
A new and comprehensive approach to the subject is taken. The finite element method is placed within a wider framework than strictly charged particle optics. Concepts developed in fluid flow and structural analysis, not hitherto used in charged particle optics, are presented. Benchmark test results provide a way of comparing the finite element method to other field-solving methods. The book also reports on some high-order interpolation techniques and mesh generation methods that will be of interest to other finite element researchers.
Additional coverage includes:
  • field theory and field solutions for charged particle optics;
  • aspects of the finite difference method related to the finite element method;
  • finite element theory and procedure, including detailed formulation of local and global matrices;
  • higher-order elements, which can be an effective way of improving finite element accuracy;
  • the finite element method in three dimensions;
  • ways to formulate scalar and vector problems for magnetic fields; and
  • significant reduction of truncation errors using higher-order elements and extrapolation methods.

Muu info

Springer Book Archives
1. Field Theory.-
1. Electrostatics.-
2. Magnetostatics.-
2. Field
Solutions for Charged Particle Optics.-
1. The Equations of motion.-
2. The
Paraxial Equation of Motion.-
3. On-axis Lens Aberrations.-
4. Electrostatic
and Magnetic Deflection Fields.-
3. The Finite Difference Method.-
1. Local
finite 5pt difference equations.-
2. The Matrix Equation.-
3. Truncation
errors.-
4. Asymmetric stars.-
5. Material Interfaces.-
6. The nine pointed
star in rectilinear coordinates.-
7. Axisymmetric cylindrical coordinates.-
4. Finite Element Concepts.-
1. Finite Elements in one dimension.-
2. The
Variational method in two dimensions.-
3. First-order shape functions.-
4.
The Galerkin Method.-
5. Nodal equations and Matrix Assembly.-
6.
Axisymmetric Cylindrical Coordinates.-
7. Edge elements.-
5. High-Order
Elements.-
1. Triangle elements.-
2. Quadrilateral elements.-
3. The
Serendipity family of elements.-
6. Elements in Three Dimensions.-
1. Element
shape functions.-
2. Generating tetrahedral elements to fit curved boundary
surfaces.-
7. FEM formulation in Magnetostatics.-
1. Magnetic vector
potential.-
2. The magnetic scalar potential in three dimensions.-
3.
Saturation Effects.-
8. Electric Lenses.-
1. Accuracy issues.-
2. Direct ray
tracing using off-axis mesh node potentials.-
9. Magnetic Lenses.-
1.
Accuracy issues.-
2. Magnetic axial field continuity tests.-
3. Magnetic
field computations in three dimensions.-
10. Deflection Fields.-
1. Finite
element formulation.-
2. Accuracy tests.-
11. Mesh Related Issues.-
1.
Structured vs unstructured.-
2. The Boundary-fitted coordinate method.-
3.
Mesh refinement for electron gun simulation.-
4. High-order interpolation.-
5. Flux line refinement for three dimensional electrostatic problems.-
6.
Accuracy tests.- Appendix 1: Element Integration formulas.-
1. Gaussian
Quadrature.-
2. Triangle elements.- Appendix 2: Second-order 9 node rectangle
element pictorial stars.- Appendix 3: Greens Integration formulas.- Appendix
4: Near-axis analytical solution for the solenoid test example.- Appendix 5:
Deflection fields for a conical saddle yoke in free space.