Muutke küpsiste eelistusi

First Course in Sobolev Spaces 2nd Revised edition [Kõva köide]

  • Formaat: Hardback, 734 pages, kõrgus x laius: 254x178 mm, kaal: 1440 g
  • Sari: Graduate Studies in Mathematics
  • Ilmumisaeg: 01-Jan-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470429217
  • ISBN-13: 9781470429218
Teised raamatud teemal:
  • Formaat: Hardback, 734 pages, kõrgus x laius: 254x178 mm, kaal: 1440 g
  • Sari: Graduate Studies in Mathematics
  • Ilmumisaeg: 01-Jan-2019
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470429217
  • ISBN-13: 9781470429218
Teised raamatud teemal:
This book is about differentiation of functions. It is divided into two parts, which can be used as different textbooks, one for an advanced undergraduate course in functions of one variable and one for a graduate course on Sobolev functions. The first part develops the theory of monotone, absolutely continuous, and bounded variation functions of one variable and their relationship with Lebesgue-Stieltjes measures and Sobolev functions. It also studies decreasing rearrangement and curves. The second edition includes a chapter on functions mapping time into Banach spaces.

The second part of the book studies functions of several variables. It begins with an overview of classical results such as Rademacher's and Stepanoff's differentiability theorems, Whitney's extension theorem, Brouwer's fixed point theorem, and the divergence theorem for Lipschitz domains. It then moves to distributions, Fourier transforms and tempered distributions. The remaining chapters are a treatise on Sobolev functions. The second edition focuses more on higher order derivatives and it includes the interpolation theorems of Gagliardo and Nirenberg. It studies embedding theorems, extension domains, chain rule, superposition, Poincare's inequalities and traces. A major change compared to the first edition is the chapter on Besov spaces, which are now treated using interpolation theory.
Preface xiii
Preface to the Second Edition xiii
Preface to the First Edition xv
Acknowledgments xxi
Second Edition xxi
First Edition xxii
Part 1 Functions of One Variable
Chapter 1 Monotone Functions
3(26)
§1.1 Continuity
3(6)
§1.2 Differentiability
9(20)
Chapter 2 Functions of Bounded Pointwise Variation
29(38)
§2.1 Pointwise Variation
29(5)
§2.2 Continuity
34(6)
§2.3 Differentiability
40(4)
§2.4 Monotone Versus BPV
44(3)
§2.5 The Space BPV(I; Y)
47(8)
§2.6 Composition in BPV {I; Y)
55(4)
§2.7 Banach Indicatrix
59(8)
Chapter 3 Absolutely Continuous Functions
67(44)
§3.1 AC(I; Y) Versus BPV(I; Y)
67(4)
§3.2 The Fundamental Theorem of Calculus
71(13)
§3.3 Lusin (N) Property
84(7)
§3.4 Superposition in AC(I; Y)
91(4)
§3.5 Chain Rule
95(5)
§3.6 Change of Variables
100(3)
§3.7 Singular Functions
103(8)
Chapter 4 Decreasing Rearrangement
111(22)
§4.1 Definition and First Properties
111(15)
§4.2 Function Spaces and Decreasing Rearrangement
126(7)
Chapter 5 Curves
133(24)
§5.1 Rectifiable Curves
133(10)
§5.2 Arclength
143(3)
§5.3 Length Distance
146(3)
§5.4 Curves and Hausdorff Measure
149(3)
§5.5 Jordan's Curve Theorem
152(5)
Chapter 6 Lebesgue--Stieltjes Measures
157(26)
§6.1 Measures Versus Increasing Functions
157(11)
§6.2 Vector-valued Measures Versus BPV(I; Y)
168(9)
§6.3 Decomposition of Measures
177(6)
Chapter 7 Functions of Bounded Variation and Sobolev Functions
183(22)
§7.1 BV(Ω) Versus BPV(Ω)
183(5)
§7.2 Sobolev Functions Versus Absolutely Continuous Functions
188(8)
§7.3 Interpolation Inequalities
196(9)
Chapter 8 The Infinite-Dimensional Case
205(34)
§8.1 The Bochner Integral
205(7)
§8.2 Lp Spaces on Banach Spaces
212(8)
§8.3 Functions of Bounded Pointwise Variation
220(4)
§8.4 Absolute Continuous Functions
224(5)
§8.5 Sobolev Functions
229(10)
Part 2 Functions of Several Variables
Chapter 9 Change of Variables and the Divergence Theorem
239(42)
§9.1 Directional Derivatives and Differentiability
239(3)
§9.2 Lipschitz Continuous Functions
242(7)
§9.3 The Area Formula: The C1 Case
249(13)
§9.4 The Area Formula: The Differentiable Case
262(11)
§9.5 The Divergence Theorem
273(8)
Chapter 10 Distributions
281(38)
§10.1 The Spaces DK(Ω), D(Ω), and D'(Ω)
281(7)
§10.2 Order of a Distribution
288(2)
§10.3 Derivatives of Distributions and Distributions as Derivatives
290(8)
§10.4 Rapidly Decreasing Functions and Tempered Distributions
298(4)
§10.5 Convolutions
302(3)
§10.6 Convolution of Distributions
305(4)
§10.7 Fourier Transforms
309(7)
§10.8 Littlewood-Paley Decomposition
316(3)
Chapter 11 Sobolev Spaces
319(36)
§11.1 Definition and Main Properties
319(6)
§11.2 Density of Smooth Functions
325(11)
§11.3 Absolute Continuity on Lines
336(8)
§11.4 Duals and Weak Convergence
344(5)
§11.5 A Characterization of W1, p(Ω)
349(6)
Chapter 12 Sobolev Spaces: Embeddings
355(56)
§12.1 Embeddings: mp < N
356(16)
§12.2 Embeddings: mp = N
372(6)
§12.3 Embeddings: mp > N
378(9)
§12.4 Superposition
387(12)
§12.5 Interpolation Inequalities in RN
399(12)
Chapter 13 Sobolev Spaces: Further Properties
411(48)
§13.1 Extension Domains
411(19)
§13.2 Poincare Inequalities
430(19)
§13.3 Interpolation Inequalities in Domains
449(10)
Chapter 14 Functions of Bounded Variation
459(38)
§14.1 Definition and Main Properties
459(3)
§14.2 Approximation by Smooth Functions
462(6)
§14.3 Bounded Pointwise Variation on Lines
468(10)
§14.4 Coarea Formula for BV Functions
478(4)
§14.5 Embeddings and Isoperimetric Inequalities
482(7)
§14.6 Density of Smooth Sets
489(4)
§14.7 A Characterization of BV(Ω)
493(4)
Chapter 15 Sobolev Spaces: Symmetrization
497(20)
§15.1 Symmetrization in Lp Spaces
497(5)
§15.2 Lorentz Spaces
502(2)
§15.3 Symmetrization of W1,p and BV Functions
504(6)
§15.4 Sobolev Embeddings Revisited
510(7)
Chapter 16 Interpolation of Banach Spaces
517(22)
§16.1 Interpolation: X-Method
517(9)
§16.2 Interpolation: J-Method
526(4)
§16.3 Duality
530(5)
§16.4 Lorentz Spaces as Interpolation Spaces
535(4)
Chapter 17 Besov Spaces
539(52)
§17.1 Besov Spaces Bs,pq
539(6)
§17.2 Some Equivalent Seminorms
545(6)
§17.3 Besov Spaces as Interpolation Spaces
551(10)
§17.4 Sobolev Embeddings
561(4)
§17.5 The Limit of Bs,pq as s → 0+ and s → m-
565(6)
§17.6 Besov Spaces and Derivatives
571(7)
§17.7 Yet Another Equivalent Norm
578(7)
§17.8 And More Embeddings
585(6)
Chapter 18 Sobolev Spaces: Traces
591(44)
§18.1 The Trace Operator
592(6)
§18.2 Traces of Functions in W1,1(Ω)
598(7)
§18.3 Traces of Functions in BV(Ω)
605(1)
§18.4 Traces of Functions in W1,p(Ω), p > 1
606(15)
§18.5 Traces of Functions in Wrn,1(Ω)
621(5)
§18.6 Traces of Functions in Wrn,p(Ω), p > 1
626(1)
§18.7 Besov Spaces and Weighted Sobolev Spaces
626(9)
Appendix A Functional Analysis
635(16)
§A.1 Topological Spaces
635(3)
§A.2 Metric Spaces
638(1)
§A.3 Topological Vector Spaces
639(4)
§A.4 Normed Spaces
643(2)
§A.5 Weak Topologies
645(3)
§A.6 Hilbert Spaces
648(3)
Appendix B Measures
651(30)
§B.1 Outer Measures and Measures
651(4)
§B.2 Measurable and Integrable Functions
655(7)
§B.3 Integrals Depending on a Parameter
662(1)
§B.4 Product Spaces
663(2)
§B.5 Radon--Nikodym's and Lebesgue's Decomposition Theorems
665(1)
§B.6 Signed Measures
666(2)
§B.7 Lp Spaces
668(5)
§B.8 Modes of Convergence
673(3)
§B.9 Radon Measures
676(2)
§B.10 Covering Theorems in Rn
678(3)
Appendix C The Lebesgue and Hausdorff Measures
681(22)
§C.1 The Lebesgue Measure
681(2)
§C.2 The Brunn--Minkowski Inequality
683(4)
§C3 Mollifiers
687(7)
§C.4 Maximal Functions
694(1)
§C5 BMO Spaces
695(3)
§C6 Hardy's Inequality
698(1)
§0.7 Hausdorff Measures
699(4)
Appendix D Notes
703(8)
Appendix E Notation and List of Symbols
711(6)
Bibliography 717(12)
Index 729
Giovanni Leoni, Carnegie Mellon University, Pittsburgh, PA.