Muutke küpsiste eelistusi

First Introduction to Quantum Computing and Information 2018 ed. [Kõva köide]

  • Formaat: Hardback, 233 pages, kõrgus x laius: 235x155 mm, kaal: 641 g, 41 Illustrations, black and white; XVII, 233 p. 41 illus., 1 Hardback
  • Ilmumisaeg: 04-Oct-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319916289
  • ISBN-13: 9783319916286
  • Kõva köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 233 pages, kõrgus x laius: 235x155 mm, kaal: 641 g, 41 Illustrations, black and white; XVII, 233 p. 41 illus., 1 Hardback
  • Ilmumisaeg: 04-Oct-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319916289
  • ISBN-13: 9783319916286
This book addresses and introduces new developments in the field of Quantum Information and Computing (QIC) for a primary audience of undergraduate students.





 Developments over the past few decades have spurred the need for QIC courseware at major research institutions. This book broadens the exposure of QIC science to the undergraduate market. The subject matter is introduced in such a way so that it is accessible to students with only a first-year calculus background. Greater accessibility allows a broader range of academic offerings. Courses, based on this book, could be offered in the Physics, Engineering, Math and Computer Science departments.





 This textbook incorporates Mathematica-based examples into the book. In this way students are allowed a hands-on experience in which difficult abstract concepts are actualized by simulations. The students can turn knobs" in parameter space and explore how the system under study responds. The incorporation of symbolic manipulation software into course-ware allows a more holistic approach to the teaching of difficult concepts. Mathematica software is used here because it is easy to use and allows a fast learning curve for students who have limited experience with scientific programming.

Arvustused

The book allows for people with different backgrounds to understand the building blocks of these two research fields, providing for a well-structured pedagogical basis on which both undergraduate and graduate students, lecturers and researchers from different academic backgrounds can learn the main foundations of quantum computer science. On its whole, the work is well organized, extensive and a relevant reference for both lecturers and researchers on quantum computation and quantum information science. (Carlos Pedro Gonçalves, zbMath 1410.81002, 2019)

1 A Quantum Mechanic's Toolbox
1(22)
1.1 Bits and Qubits
1(2)
1.1.1 Binary Arithmetic
1(2)
1.2 A Short Introduction to Linear Vector Spaces
3(2)
1.3 Hilbert Space
5(15)
1.3.1 Dirac's Bra-Ket Notation
5(9)
1.3.2 Outer Products and Operators '1
1.3.3 Direct and Kronecker Products
14(6)
Problems
20(2)
References
22(1)
2 Apples and Oranges: Matrix Representations
23(26)
2.1 Matrix Representations
23(6)
2.1.1 Matrix Operations
25(2)
2.1.2 The Bloch Sphere
27(2)
2.2 The Pauli Matrices
29(5)
2.3 Polarization of Light: A Classical Qubit
34(4)
2.3.1 A Qubit Parable
36(2)
2.4 Spin
38(6)
2.4.1 Non-commuting Observables and the Uncertainty Principle
40(4)
2.5 Direct Products
44(2)
Problems
46(2)
Reference
48(1)
3 Circuit Model of Computation
49(28)
3.1 Boole's Logic Tables
49(4)
3.1.1 Gates as Mappings
52(1)
3.2 Our First Quantum Circuit
53(17)
3.2.1 Multi-Qubit Gates
57(3)
3.2.2 Deutsch's Algorithm
60(7)
3.2.3 Deutsch-Josza Algorithm
67(3)
3.3 Hamiltonian Evolution
70(2)
Problems
72(3)
Reference
75(2)
4 Quantum Killer Apps: Quantum Fourier Transform and Search Algorithms
77(28)
4.1 Introduction
77(1)
4.2 Fourier Series
77(5)
4.2.1 Nyquist-Shannon Sampling
79(1)
4.2.2 Discrete Fourier Transform
79(3)
4.3 Quantum Fourier Transform
82(14)
4.3.1 QFT Diagrammatics
85(4)
4.3.2 Period Finding with the QFT Gate
89(4)
4.3.3 Shor's Algorithm
93(3)
4.4 Grover's Search Algorithm
96(5)
Problems
101(2)
References
103(2)
5 Quantum Mechanics According to Martians: Density Matrix Theory
105(20)
5.1 Introduction
105(1)
5.2 Density Operators and Matrices
106(5)
5.3 Pure and Mixed States
111(2)
5.4 Reduced Density Operators
113(4)
5.4.1 Entangled States
114(3)
5.5 Schmidt Decomposition
117(3)
5.6 Von Neumann Entropy
120(2)
Problems
122(2)
References
124(1)
6 No-Cloning Theorem, Quantum Teleportation and Spooky Correlations
125(24)
6.1 Introduction
125(1)
6.2 On Quantum Measurements
126(1)
6.3 The No-Cloning Theorem
126(2)
6.4 Quantum Teleportation
128(4)
6.5 EPR and Bell Inequalities
132(8)
6.5.1 Bertlmann's Socks
135(3)
6.5.2 Bell's Theorem
138(2)
6.6 Applications
140(6)
6.6.1 BB84 Protocol
141(3)
6.6.2 Ekert Protocol
144(1)
6.6.3 Quantum Dense Coding
145(1)
6.7 GHZ Entaglements
146(1)
Problems
147(1)
References
147(2)
7 Quantum Hardware I: Ion Trap Qubits
149(34)
7.1 Introduction
149(1)
7.1.1 The DiVincenzo Criteria
149(1)
7.2 Lagrangian and Hamiltonian Dynamics in a Nutshell
150(3)
7.2.1 Dynamics of a Translating Rotor
151(2)
7.3 Quantum Mechanics of a Free Rotor: A Poor Person's Atomic Model
153(9)
7.3.1 Rotor Dynamics and the Hadamard Gate
157(3)
7.3.2 Two-Qubit Gates
160(2)
7.4 The Cirac-Zoller Mechanism
162(11)
7.4.1 Quantum Theory of Simple Harmonic Motion
164(2)
7.4.2 A Phonon-Qubit Pair Hamiltonian
166(1)
7.4.3 Light-Induced Rotor-Phonon Interactions
167(6)
7.5 Trapped Ion Qubits
173(8)
7.5.1 M0lmer-S0renson Coupling
178(3)
Problems
181(1)
References
182(1)
8 Quantum Hardware II: cQED and cirQED
183(22)
8.1 Introduction
183(2)
8.2 Cavity Quantum Electrodynamics (cQED)
185(7)
8.2.1 Eigenstates of the Jaynes-Cummings Hamiltonian
190(2)
8.3 Circuit QED (cirQED)
192(9)
8.3.1 Quantum LC Circuits
192(5)
8.3.2 Artificial Atoms
197(1)
8.3.3 Superconducting Qubits
198(3)
Problems
201(3)
References
204(1)
9 Computare Errare Est: Quantum Error Correction
205(22)
9.1 Introduction
205(2)
9.2 Quantum Error Correction
207(6)
9.2.1 Phase Flip Errors
211(2)
9.3 The Shor Code
213(2)
9.4 Stabilizers
215(8)
9.4.1 A Short Introduction to the Pauli Group
217(4)
9.4.2 Stabilizer Analysis of the Shor Code
221(2)
9.5 Fault Tolerant Computing and the Threshold Theorem
223(2)
Problems
225(1)
References
226(1)
Appendix A Mathematica and Software Resources 227(2)
Index 229
Bernard Zygelman is a Professor of Physics at the University of Nevada, Las Vegas (UNLV).  His research focuses on quantum dynamics of few-particle systems. He has been a Visiting Scientist at the Harvard-MIT Center for Ultra-Cold Atoms (CUA), the Smithsonian Astrophysical Observatory (SAO) and the Institute for Theoretical Physics (ITP) (now the Kavli-Institute) at the University of California, Santa Barbara. In the past dozen years, Dr. Zygelman has developed and taught quantum computing and information courseware at both the graduate and undergraduate level.