Muutke küpsiste eelistusi

First-order and Stochastic Optimization Methods for Machine Learning 2020 ed. [Pehme köide]

  • Formaat: Paperback / softback, 582 pages, kõrgus x laius: 235x155 mm, kaal: 902 g, 16 Illustrations, color; 2 Illustrations, black and white; XIII, 582 p. 18 illus., 16 illus. in color., 1 Paperback / softback
  • Sari: Springer Series in the Data Sciences
  • Ilmumisaeg: 16-May-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030395707
  • ISBN-13: 9783030395704
Teised raamatud teemal:
  • Pehme köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 582 pages, kõrgus x laius: 235x155 mm, kaal: 902 g, 16 Illustrations, color; 2 Illustrations, black and white; XIII, 582 p. 18 illus., 16 illus. in color., 1 Paperback / softback
  • Sari: Springer Series in the Data Sciences
  • Ilmumisaeg: 16-May-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030395707
  • ISBN-13: 9783030395704
Teised raamatud teemal:

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.



Machine Learning Models.- Convex Optimization Theory.- Deterministic
Convex Optimization.- Stochastic Convex Optimization.- Convex Finite-sum and
Distributed Optimization.- Nonconvex Optimization.- Projection-free
Methods.- Operator Sliding and Decentralized Optimization.