|
|
1 | (4) |
|
Flow diagram of procedure used |
|
|
1 | (1) |
|
|
1 | (2) |
|
Sequence of subjects discussed |
|
|
3 | (2) |
|
Assumptions and Methods of Fitting Equations |
|
|
5 | (14) |
|
|
5 | (1) |
|
Methods of fitting equations |
|
|
6 | (1) |
|
|
6 | (3) |
|
Linear least-squares estimation |
|
|
9 | (1) |
|
Nonlinear least-squares estimation |
|
|
9 | (10) |
|
Linear least-squares estimates--one independent variable |
|
|
10 | (1) |
|
|
10 | (1) |
|
Basic idea and derivation |
|
|
10 | (2) |
|
|
12 | (1) |
|
Linear least-squares estimates--general case |
|
|
13 | (1) |
|
Estimates of coefficients |
|
|
13 | (2) |
|
Variance and standard errors of coefficients |
|
|
15 | (1) |
|
|
16 | (1) |
|
Partitioning sums of squares |
|
|
16 | (1) |
|
Multiple correlation coefficient squared, Ry2 |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
Residual root mean square |
|
|
18 | (1) |
|
|
19 | (31) |
|
Plotting data and selecting form of equation |
|
|
19 | (1) |
|
Plots of linearizable equations |
|
|
19 | (3) |
|
Plots of nonlinearizable equations |
|
|
22 | (2) |
|
Statistical independence and clusters of dependent variable |
|
|
24 | (1) |
|
Allocation of data points |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (5) |
|
Dealing with error in the independent variable |
|
|
32 | (1) |
|
Example of fitting a straight line to data-one independent variable |
|
|
32 | (18) |
|
Cumulative distribution plots of random normal deviates |
|
|
33 | (1) |
|
Example of fitting a straight line to data--one independent variable |
|
|
33 | (17) |
|
Two or More Independent Variables |
|
|
50 | (10) |
|
Inadequacies of x-y plots with two or more independent variables |
|
|
50 | (3) |
|
Equation forms and transformations |
|
|
53 | (2) |
|
Variances of estimated coefficients, bt, and fitted values, Yj |
|
|
55 | (1) |
|
Use of indicator variables for discontinuous or qualitative classifications |
|
|
56 | (1) |
|
One qualitative factor at two levels |
|
|
|
One qualitative two-level factor and one quantitative (continuous) factor |
|
|
|
Discrete factors at more than two levels |
|
|
|
Discrete factors interacting with continuous factors |
|
|
|
Allocation of data in factor space |
|
|
57 | (3) |
|
Linear dependences among the xi |
|
|
|
The outermost points in data space |
|
|
|
|
|
Fitting an Equation in Three Independent Variables |
|
|
60 | (23) |
|
|
60 | (1) |
|
|
60 | (1) |
|
Possible causes of disturbance |
|
|
61 | (4) |
|
Outlier or logged response or squared independent variable |
|
|
65 | (7) |
|
Random error estimated from near neighbors |
|
|
72 | (1) |
|
Independence of observations |
|
|
73 | (2) |
|
Systematic examination of alternatives discovered sequentially |
|
|
75 | (2) |
|
Remote points in factor space |
|
|
77 | (1) |
|
Equation using ``lined-out'' data |
|
|
77 | (4) |
|
Conclusions on stack loss problem |
|
|
81 | (1) |
|
|
82 | (1) |
|
Selection of Independent Variables |
|
|
83 | (38) |
|
|
83 | (3) |
|
|
|
|
|
2K possible equations from K candidate variables |
|
|
|
|
|
|
|
All 2K equations and fractions |
|
|
|
Total squared error as a criterion for goodness of fit-CP |
|
|
86 | (3) |
|
|
|
Derivation of the CP statistic |
|
|
|
Mallows' graphical method of comparing fitted equations |
|
|
|
|
89 | (2) |
|
Disposition of data in factor space |
|
|
91 | (4) |
|
|
95 | (26) |
|
Search for all 2K equations |
|
|
|
|
|
|
|
Computer printouts of four-variable example |
|
|
104 | (1) |
|
Computer printouts of six-variable example |
|
|
104 | (1) |
|
Fractional replication for 2K equations |
|
|
104 | (17) |
|
Some Consequences of the Disposition of the Data Points |
|
|
121 | (113) |
|
|
121 | (1) |
|
Description of example with ten independent variables |
|
|
122 | (1) |
|
|
|
Interior analysis I. ``Component effects'' table |
|
|
123 | (1) |
|
Interior analysis II. Component and component-plus-residual plots |
|
|
124 | (2) |
|
Search of all 2K possible subset equations |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
127 | (2) |
|
Interior analysis III. Weighted-squared-standardized-distance to look for far-out points of influential variables |
|
|
129 | (2) |
|
Interior analysis IV Variance ratio to look for far-out points of uninfluential variables |
|
|
131 | (2) |
|
Interior analysis V Error estimation from near neighbors |
|
|
133 | (3) |
|
|
136 | (1) |
|
Other examples of error estimation from near neighbors |
|
|
137 | (2) |
|
Six-variable example of Chapter 6 |
|
|
|
Stack loss example of Chapter 5 |
|
|
|
Additional examples of using component and component-plus-residual plots |
|
|
139 | (6) |
|
Example of the use of plots in choosing the form of equation |
|
|
|
Distribution of observations over each independent variable |
|
|
|
Four-variable example-Distribution of independent variables |
|
|
|
Eleven-variable example-Inner and outer observations |
|
|
|
Other conditions identified by component and component-plus-residual plots |
|
|
145 | (1) |
|
|
146 | (88) |
|
Computer printouts of ten-variable example |
|
|
150 | (49) |
|
Computer printout of six-variable example |
|
|
199 | (1) |
|
Computer printouts of stack loss example |
|
|
200 | (7) |
|
Computer printouts of four-variable octane example |
|
|
207 | (11) |
|
Computer printouts of eleven-variable example |
|
|
218 | (14) |
|
Critical values for studentized residual to test for single outlier |
|
|
232 | (2) |
|
Selection of Variables in Nested Data |
|
|
234 | (33) |
|
|
234 | (2) |
|
|
236 | (1) |
|
Recognition of nested data |
|
|
236 | (1) |
|
Data identification and entry |
|
|
236 | (1) |
|
Fitting equation to nested data |
|
|
236 | (4) |
|
Use of indicator (dummy) variables |
|
|
|
Test for significance of added variables; ``individual'' versus ``common'' slopes |
|
|
|
Fitting equation among sets of nested data |
|
|
240 | (3) |
|
Selecting variables based on total error, recognizing bias and random error |
|
|
243 | (1) |
|
Properties of final equation |
|
|
244 | (3) |
|
|
247 | (20) |
|
Data preparation and computer printouts of example |
|
|
248 | (19) |
|
Nonlinear Least Squares, a Complex Example |
|
|
267 | (71) |
|
|
267 | (1) |
|
|
268 | (3) |
|
|
271 | (2) |
|
|
273 | (3) |
|
Nonlinear fit-observations of individual cements versus time |
|
|
276 | (1) |
|
Fit with indicator variables |
|
|
277 | (3) |
|
|
280 | (13) |
|
Possible nesting within cements |
|
|
293 | (2) |
|
Comparison with previous linear least-square fits |
|
|
295 | (1) |
|
Fit using composition in mol percents |
|
|
296 | (3) |
|
|
299 | (39) |
|
Computer printout of nonlinear example |
|
|
300 | (38) |
Glossary |
|
338 | (16) |
|
|
338 | (1) |
|
|
338 | (5) |
|
|
343 | (11) |
LINWOOD User's Manual |
|
354 | (66) |
|
LINWOOD, a computer linear least-squares curve-fitting program |
|
|
|
|
354 | (1) |
|
|
355 | (1) |
|
|
356 | (20) |
|
|
356 | (10) |
|
|
366 | (1) |
|
Problems using transformation option |
|
|
367 | (7) |
|
|
374 | (2) |
|
|
376 | (5) |
|
Example of weighted observations |
|
|
381 | (15) |
|
Example to measure the precision of calculations |
|
|
396 | (10) |
|
Example of using plots in choosing the form of equation |
|
|
406 | (9) |
|
|
415 | (3) |
|
|
418 | (1) |
|
Summary of order of cards |
|
|
419 | (1) |
NONLINWOOD User's Manual |
|
420 | (29) |
|
NONLINWOOD, a computer nonlinear least-squares curve-fitting program |
|
|
|
|
420 | (1) |
|
|
421 | (1) |
|
|
422 | (6) |
|
|
422 | (2) |
|
|
424 | (1) |
|
Starting values of coefficients |
|
|
424 | (1) |
|
|
424 | (1) |
|
|
425 | (1) |
|
Control and data card entry forms |
|
|
425 | (1) |
|
|
425 | (2) |
|
Example of transformations |
|
|
427 | (1) |
|
Example 1 2 coefficients 2 variables |
|
|
428 | (14) |
|
Example 2 43 coefficients 16 variables |
|
|
442 | (2) |
|
Example 3 19 coefficients 7 variables |
|
|
444 | (2) |
|
|
446 | (1) |
|
Example of subroutine model |
|
|
447 | (1) |
|
Summary of order of cards |
|
|
447 | (2) |
Bibliography |
|
449 | (4) |
Index |
|
453 | |