Muutke küpsiste eelistusi

Flat Panel Display Manufacturing [Kõva köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Hardback, 496 pages, kõrgus x laius x paksus: 257x203x28 mm, kaal: 1293 g
  • Sari: Wiley Series in Display Technology
  • Ilmumisaeg: 31-Aug-2018
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119161347
  • ISBN-13: 9781119161349
Teised raamatud teemal:
  • Formaat: Hardback, 496 pages, kõrgus x laius x paksus: 257x203x28 mm, kaal: 1293 g
  • Sari: Wiley Series in Display Technology
  • Ilmumisaeg: 31-Aug-2018
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119161347
  • ISBN-13: 9781119161349
Teised raamatud teemal:

An extensive introduction to the engineering and manufacture of current and next-generation flat panel displays

This book provides a broad overview of the manufacturing of flat panel displays, with a particular emphasis on the display systems at the forefront of the current mobile device revolution. It is structured to cover a broad spectrum of topics within the unifying theme of display systems manufacturing. An important theme of this book is treating displays as systems, which expands the scope beyond the technologies and manufacturing of traditional display panels (LCD and OLED) to also include key components for mobile device applications, such as flexible OLED, thin LCD backlights, as well as the manufacturing of display module assemblies.

Flat Panel Display Manufacturing fills an important gap in the current book literature describing the state of the art in display manufacturing for today's displays, and looks to create a reference the development of next generation displays. The editorial team brings a broad and deep perspective on flat panel display manufacturing, with a global view spanning decades of experience at leading institutions in Japan, Korea, Taiwan, and the USA, and including direct pioneering contributions to the development of displays. The book includes a total of 24 chapters contributed by experts at leading manufacturing institutions from the global FPD industry in Korea, Japan, Taiwan, Germany, Israel, and USA.

  • Provides an overview of the evolution of display technologies and manufacturing
  • Treats display products as systems with manifold applications, expanding the scope beyond traditional display panel manufacturing to key components for mobile devices and TV applications
  • Provides a detailed overview of LCD manufacturing, including panel architectures, process flows, and module manufacturing
  • Provides a detailed overview of OLED manufacturing for both mobile and TV applications, including a chapter dedicated to the young field of flexible OLED manufacturing
  • Provides a detailed overview of the key unit processes and corresponding manufacturing equipment, including manufacturing test & repair of TFT array panels as well as display module inspection & repair
  • Introduces key topics in display manufacturing science and engineering, including productivity & quality, factory architectures, and green manufacturing

Flat Panel Display Manufacturing will appeal to professionals and engineers in R&D departments for display-related technology development, as well as to graduates and Ph.D. students specializing in LCD/OLED/other flat panel displays.

Arvustused

"If there is only one book on flat panel displays that is going to be on your bookshelf, then I would highly recommend this one. It will be a text that you refer to time and again for clear and concise explanations of how LCD and OLED displays are constructed and the processes used to make them into commercially successful products. As you use it, you will find yourself drawn in by the clear and colorful illustrations and will find it hard to not read more than you first intended." Aris Silzars Ph.D., Member of the Board of Advisors, NanoLumens, Inc. and Past President of SID, USA

List of Contributors xxi
Series Editor's Foreword xxv
Preface xxvii
1 Introduction 1(12)
Fang-Chen Luo
Jun Souk
Shinji Morozumi
Ion Bita
1.1 Introduction
1(1)
1.2 Historic Review of TFT-LCD Manufacturing Technology Progress
1(6)
1.2.1 Early Stage TFT and TFT-Based Displays
2(1)
1.2.2 The 1990s: Initiation of TFT-LCD Manufacturing and Incubation of TFT-LCD Products
2(2)
1.2.3 Late 1990s: Booming of LCD Desktop Monitor and Wide Viewing Angle Technologies
4(1)
1.2.4 The 2000s: A Golden Time for LCD-TV Manufacturing Technology Advances
4(3)
1.3 Analyzing the Success Factors in LCD Manufacturing
1.3.1 Scaling the LCD Substrate Size
7(2)
1.3.2 Major Milestones in TFT-LCD Manufacturing Technology
9(1)
1.3.2.1 First kevolution: AKT Cluster PECVD Tool in 1993
9(1)
1.3.2.2 Second Revolution: Wide Viewing Angle Technology in 1997
9(1)
1.3.2.3 Third Revolution: LC Drop Filling Technology in 2003
10(1)
1.3.3 Major Stepping Stones Leading to the Success of Active Matrix Displays
10(1)
References
11(2)
2 TFT Array Process Architecture and Manufacturing Process Flow 13(26)
Chiwoo Kim
2.1 Introduction
13(2)
2.2 Material Properties and TFT Characteristics of a-Si, LTPS, and Metal Oxide TFTs
15(7)
2.2.1 a-Si TFT
15(1)
2.2.2 LTPS TFT
16(6)
2.2.2.1 Excimer Laser Annealing (ELA)
17(5)
2.2.3 Amorphous Oxide Semiconductor TFTs
22(1)
2.3 a-Si TFT Array Process Architecture and Process Flow
22(5)
2.3.1 Four-Mask Count Process Architecture for TFT-LCDs
24(3)
2.4 Poly-Si TFT Architecture and Fabrication
27(3)
2.5 Oxide Semiconductor TFT Architecture and Fabrication
30(2)
2.6 TFT LCD Applications
32(1)
2.7 Development of SLS-Based System on Glass Display [ 1, 11, 14, 15]
33(2)
References
35(4)
3 Color Filter Architecture, Materials, and Process Flow 39(20)
Young Seok Choi
Musun Kwak
Youn Sung Na
3.1 Introduction
39(1)
3.2 Structure and Role of the Color Filter
39(7)
3.2.1 Red, Green, and Blue (RGB) Layer
40(4)
3.2.1.1 Color Coordinate and Color Gamut
41(3)
3.2.2 Black Matrix
44(1)
3.2.3 Overcoat and Transparent Electrode
45(1)
3.2.4 Column Spacer
46(1)
3.3 Color Filter Manufacturing Process Flow
46(9)
3.3.1 Unit Process
46(8)
3.3.1.1 Formation of Black Matrix
46(2)
3.3.1.2 Formation of RGB Layer
48(3)
3.3.1.3 Overcoat (OC)
51(2)
3.3.1.4 Formation of ITO Electrodes
53(1)
3.3.1.5 Column Spacer (Pattern Spacer)
53(1)
3.3.2 Process Flow for Different LC Mode
54(1)
3.3.2.1 Color Filter for the TN Mode
54(1)
3.3.2.2 Color Filter for the IPS Mode
54(1)
3.3.2.3 Color Filter for the VA Mode
55(1)
3.4 New Color Filter Design
55(2)
3.4.1 White Color (Four Primary Colors) Technology
55(1)
3.4.2 Color Filter on TFT
56(1)
References
57(2)
4 Liquid Crystal Cell Process 59(12)
Heung-Shik Park
Ki-Chul Shin
4.1 Introduction
59(1)
4.2 Liquid Crystal Cell Process
59(11)
4.2.1 Alignment Layer Treatment
61(1)
4.2.2 Process of Applying PI Layers
62(1)
4.2.3 Rubbing Process
63(1)
4.2.4 Photo-Alignment Process
64(1)
4.2.5 LC Filling Process
65(3)
4.2.5.1 Vacuum Filling Method
66(1)
4.2.5.2 End Seal Process
66(1)
4.2.5.3 One Drop Filling (ODF) Method
67(1)
4.2.6 Vacuum Assembly Process
68(1)
4.2.7 Polarizer Attachment Process
69(1)
4.3 Conclusions
70(1)
Acknowledgments
70(1)
References
70(1)
5 TFT-LCD Module and Package Process 71(16)
Chun Chang Hung
5.1 Introduction
73(1)
5.2 Driver IC Bonding: TAB and COG
73(1)
5.3 Introduction to Large-Panel JI Process
74(5)
5.3.1 COF Bonding
75(4)
5.3.1.1 Edge Clean
75(1)
5.3.1.2 ACF Attachment
76(1)
5.3.1.3 COF Pre-Bonding
77(1)
5.3.1.4 COF Main Bonding
78(1)
5.3.1.5 Lead Check
78(1)
5.3.1.6 Silicone Dispensing
78(1)
5.3.2 PCB Bonding
79(1)
5.3.3 PCB Test
79(1)
5.3.4 Press Heads: Long Bar or Short Bar
79(1)
5.4 Introduction to Small-Panel JI Process
79(4)
5.4.1 Beveling
80(1)
5.4.2 Panel Cleaning
80(1)
5.4.3 Polarizer Attachment
80(1)
5.4.4 Chip on Glass (COG) Bonding
81(1)
5.4.5 FPC on Glass (FOG) Bonding
81(1)
5.4.6 Optical Microscope (OM) Inspection
81(1)
5.4.7 UV Glue Dispense
82(1)
5.4.8 Post Bonding Inspection (PBI)
82(1)
5.4.9 Protection Glue Dispensing
82(1)
5.5 LCD Module Assembly
83(1)
5.6 Aging
84(1)
5.7 Module in Backlight or Backlight in Module
85(1)
References
86(1)
6 LCD Backlights 87(28)
Insun Hwang
Jae-Hyeon Ko
6.1 Introduction
87(3)
6.2 LED Sources
90(8)
6.2.1 GaN Epi-Wafer on Sapphire
92(1)
6.2.2 LED Chip
93(1)
6.2.3 Light Extraction
94(2)
6.2.4 LED Package
96(1)
6.2.5 SMT on FPCB
97(1)
6.3 Light Guide Plate
98(6)
6.3.1 Optical Principles of LGP
98(1)
6.3.2 Optical Pattern Design
99(2)
6.3.3 Manufacturing of LGP
101(3)
6.3.3.1 Injection Molding
101(1)
6.3.3.2 Screen Printing
102(1)
6.3.3.3 Other Methods
103(1)
6.4 Optical Films
104(7)
6.4.1 Diffuser
106(1)
6.4.2 Prism Film
107(1)
6.4.3 Reflector
108(1)
6.4.4 Other Films
108(3)
6.5 Direct-Type BLU
111(1)
6.6 Summary
111(1)
References
112(3)
7 TFT Backplane and Issues for OLED 115(14)
Chiwoo Kim
7.1 Introduction
115(1)
7.2 LTPS TFT Backplane for OLED Films
116(6)
7.2.1 Advanced Excimer Laser Annealing (AELA) for Large-Sized AMOLED Displays
117(3)
7.2.2 Line-Scan Sequential Lateral Solidification Process for AMOLED Application
120(2)
7.3 Oxide Semiconductor TFT for OLED
122(3)
7.3.1 Oxide TFT-Based OLED for Large-Sized TVs
123(2)
7.4 Best Backplane Solution for AMOLED
125(2)
References
127(2)
8A OLED Manufacturing Process for Mobile Application 129(14)
Jang Hyuk Kwon
Raju Lampande
8A.1 Introduction
129(1)
8A.2 Current Status of AMOLED for Mobile Display
130(3)
8A.2.1 Top Emission Technology
130(3)
8A.3 Fine Metal Mask Technology (Shadow Mask Technology)
133(2)
8A.4 Encapsulation Techniques for OLEDs
135(2)
8A.4.1 Frit Sealing
135(1)
8A.4.2 Thin-Film Encapsulation
136(1)
8A.5 Flexible OLED technology
137(1)
8A.6 AMOLED Manufacturing Process
137(3)
8A.7 Summary
140(1)
References
140(3)
8B OLED Manufacturing Process for TV Application 143(16)
Chang Wook Han
Yoon Heung Tak
8B.1 Introduction
143(1)
8B.2 Fine Metal Mask (FMM)
144(3)
8B.3 Manufacturing Process for White OLED and Color Filter Methods
147(10)
8B.3.1 One-Stacked White OLED Device
149(3)
8B.3.2 Two-Stacked White OLED Device
152(3)
8B.3.3 Three-Stacked White-OLED Device
155(2)
References
157(2)
9 OLED Encapsulation Technology 159(14)
Young-Hoon Shin
9.1 Introduction
159(1)
9.2 Principles of OLED Encapsulation
159(3)
9.2.1 Effect of H2O
160(2)
9.3 Classification of Encapsulation Technologies
162(8)
9.3.1 Edge Seal
163(1)
9.3.2 Frit Seal
164(2)
9.3.3 Dam and Fill
166(1)
9.3.4 Face Seal
167(1)
9.3.5 Thin-Film Encapsulation (TFE)
168(2)
9.4 Summary
170(1)
References
170(3)
10 Flexible OLED Manufacturing 173(20)
Woojae Lee
Jun Souk
10.1 Introduction
173(1)
10.2 Critical Technologies in Flexible OLED Display
174(7)
10.2.1 High-Temperature PI Film
175(1)
10.2.2 Encapsulation Layer
176(4)
10.2.2.1 Thin-Film Encapsulation (TFE) Method
176(1)
10.2.2.2 Hyrid Encapsulation Method
177(1)
10.2.2.3 Other Encapsulation Methods
178(1)
10.2.2.4 Measurement of Barrier Performance
179(1)
10.2.3 Laser Lift-Off
180(1)
10.2.4 Touch Sensor on F-OLED
181(1)
10.3 Process Flow of F-OLED
181(5)
10.3.1 PI Film Coating and Curing
181(2)
10.3.2 LTPS TFT Backplane Process
183(1)
10.3.3 OLED Deposition Process
183(2)
10.3.4 Thin-Film Encapsulation
185(1)
10.3.5 Laser Lift-Off
185(1)
10.3.6 Lamination of Backing Plastic Film and Cut to Cell Size
185(1)
10.3.7 Touch Sensor Attach
186(1)
10.3.8 Circular Polarizer Attach
186(1)
10.3.9 Module Assembly (Bonding Drive IC)
186(1)
10.4 Foldable OLED
186(2)
10.5 Summary
188(1)
References
189(4)
11A Metal Lines and ITO PVD 193(16)
Hyun Eok Shin
Chang Oh Jeong
Junho Song
11A.1 Introduction
193(5)
11A.1.1 Basic Requirements of Metallization for Display
193(2)
11A.1.2 Thin-Film Deposition by Sputtering
195(3)
11A.2 Metal Line Evolution in Past Years of TFT-LCD
198(10)
11A.2.1 Gate Line Metals
199(3)
11A.2.1.1 Al and Al Alloy Electrode
199(2)
11A.2.1.2 Cu Electrode
201(1)
11A.2.2 Data line (Source/Drain) Metals
202(3)
11A.2.2.1 Data Al Metal
202(1)
11A.2.2.2 Data Cu Metal
203(1)
11A.2.2.3 Data Chromium (Cr) Metal
203(1)
11A.2.2.4 Molybdenum (Mo) Metal
203(1)
11A.2.2.5 Titanium (Ti) Metal
204(1)
11A.3 Metallization for OLED Display
205(2)
11A.3.1 Gate Line Metals
205(1)
11A.3.2 Source/Drain Metals
205(1)
11A.3.3 Pixel Anode
206(1)
11A.4 Transparent Electrode
207(1)
References
208(1)
11B Thin-Film PVD: Materials, Processes, and Equipment 209(16)
Tetsuhiro Ohno
11B.1 Introduction
209(1)
11B.2 Sputtering Method
210(2)
11B.3 Evolution of Sputtering Equipment for FPD Devices
212(3)
11B.3.1 Cluster Tool for Gen 2 Size
212(1)
11B.3.2 Cluster Tool for Gen 4.5 to Gen 7 Size
213(1)
11B.3.3 Vertical Cluster Tool for Gen 8 Size
213(2)
11B.4 Evolution of Sputtering Cathode
215(3)
11B.4.1 Cathode Structure Evolution
215(2)
11B.4.2 Dynamic Multi Cathode for LTPS
217(1)
11B.4.3 Cathode Selection Strategy
217(1)
11B.5 Transparent Oxide Semiconductor (TOS) Thin-Film Deposition Technology
218(3)
11B.5.1 Deposition Equipment for TOS-TFT
218(1)
11B.5.2 New Cathode Structure for TOS-TFT
219(2)
11B.6 Metallization Materials and Deposition Technology
221(2)
References
223(2)
11C Thin-Film PVD (Rotary Target) 225(16)
Marcus Bender
11C.1 Introduction
225(2)
11C.2 Source Technology
227(5)
11C.2.1 Planar Cathodes
227(2)
11C.2.2 Rotary Cathodes
229(1)
11C.2.3 Rotary Cathode Array
230(2)
11C.3 Materials, Processes, and Characterization
232(7)
11C.3.1 Introduction
232(1)
11C.3.2 Backplane Metallization
232(2)
11C.3.3 Layers for Metal-Oxide TFTs
234(2)
11C.3.4 Transparent Electrodes
236(2)
11C.3.5 Adding Touch Functionality and Improving End-User Experience
238(1)
References
239(2)
12A Thin-Film PECVD (AKT) 241(32)
Tae Kyung Won
Soo Young Choi
John M. White
12A.1 Introduction
241(2)
12A.2 Process Chamber Technology
243(5)
12A.2.1 Electrode Design
243(3)
12A.2.1.1 Hollow Cathode Effect and Hollow Cathode Gradient
243(2)
12A.2.1.2 Gas Flow Control
245(1)
12A.2.1.3 Susceptor
245(1)
12A.2.2 Chamber Cleaning
246(2)
12A.3 Thin-Film Material, Process, and Characterization
248(23)
12A.3.1 Amorphous Si (a-Si) TFT
248(10)
12A.3.1.1 Silicon Nitride (SiN)
248(5)
12A.3.1.2 Amorphous Silicon (a-Si)
253(4)
12A.3.1.3 Phosphorus-Doped Amorphous Silicon (n+ a-Si)
257(1)
12A.3.2 Low-Temperature Poly Silicon (LTPS) TFT
258(5)
12A.3.2.1 Silicon Oxide (SiO)
259(1)
12A.3.2.2 a-Si Precursor Film (Dehydrogenation)
260(3)
12A.3.3 Metal-Oxide (MO) TFT
263(6)
12A.3.3.1 Silicon Oxide (SiO)
265(4)
12A.3.4 Thin-Film Encapsulation (TFE)
269(4)
12A.3.4.1 Barrier Layer (Silicon Nitride)
269(2)
12A.3.4.2 Buffer Layer
271(1)
References
271(2)
12B Thin-Film PECVD (Ulvac) 273(14)
Masashi Kikuchi
12B.1 Introduction
273(1)
12B.2 Plasma of PECVD
273(1)
12B.3 Plasma Modes and Reactor Configuration
273(3)
12B.3.1 CCP-Type Reactor
274(1)
12B.3.2 Microwave-Type Reactor
274(1)
12B.3.3 ICP-Type Reactor
275(1)
12B.4 PECVD Process for Display
276(3)
12B.4.1 a-Si Film for a-Si TFT
276(1)
12B.4.2 a-Si Film for LTPS
277(1)
12B.4.3 SiNX Film
278(1)
12B.4.4 TEOS SiO2 Film
279(1)
12B.5 PECVD System Overview
279(1)
12B.6 Remote Plasma Cleaning
279(3)
12B.6.1 Gas Flow Style of Remote Plasma Cleaning
281(1)
12B.6.2 Cleaning and Corrosion
281(1)
12B.7 Passivation Layer for OLED
282(1)
12B.7.1 Passivation by Single/Double/Multi-Layer
282(1)
12B.8 PECVD Deposition for IGZO TFT
283(1)
12B.8.1 Gate Insulator for IGZO TFT
283(1)
12B.8.2 Passivation Film for IGZO TFT
284(1)
12B.9 Particle Generation
284(2)
References
286(1)
13 Photolithography 287(24)
Yasunori Nishimura
Kozo Yano
Masataka Itoh
Masahiro Ito
13.1 Introduction
287(1)
13.2 Photolithography Process Overview
288(2)
13.2.1 Cleaning
289(1)
13.2.2 Preparation
289(1)
13.2.3 Photoresist Coating
289(1)
13.2.4 Exposure
289(1)
13.2.5 Development
289(1)
13.2.6 Etching
289(1)
13.2.7 Resist Removal
289(1)
13.3 Photoresist Coating
290(2)
13.3.1 Evolution of Photoresist Coating
290(1)
13.3.2 Slit Coating
290(2)
13.3.2.1 Principles of Slit Coating
290(1)
13.3.2.2 Slit-Coating System
291(1)
13.4 Exposure
292(8)
13.4.1 Photoresist and Exposure
292(1)
13.4.1.1 Photoresist
292(1)
13.4.1.2 Color Resist
292(1)
13.4.1.3 UV Light Source for Exposure
292(1)
13.4.2 General Aspects of Exposure Systems
292(1)
13.4.3 Stepper
293(1)
13.4.4 Projection Scanning Exposure System
294(2)
13.4.5 Mirror Projection Scan System (Canon)
296(1)
13.4.6 Multi-Lens Projection System (Nikon)
296(1)
13.4.6.1 Multi-Lens Optics
296(1)
13.4.6.2 Multi-Lens Projection System
296(1)
13.4.7 Proximity Exposure
297(3)
13.5 Photoresist Development
300(1)
13.6 Inline Photolithography Processing Equipment
301(1)
13.7 Photoresist Stripping
302(1)
13.8 Photolithography for Color Filters
303(7)
13.8.1 Color Filter Structures
303(2)
13.8.1.1 TN
304(1)
13.8.1.2 VA
304(1)
13.8.1.3 IPS
304(1)
13.8.2 Materials for Color Filters
305(2)
13.8.2.1 Black Matrix Materials
305(1)
13.8.2.2 RGB Color Materials
305(1)
13.8.2.3 PS (Photo Spacer) Materials
306(1)
13.8.3 Photolithography Process for Color Filters
307(2)
13.8.3.1 Color Resist Coating
307(1)
13.8.3.2 Exposure
307(1)
13.8.3.3 Development
308(1)
13.8.4 Higher-Performance Color Filters
309(4)
13.8.4.1 Mobile Applications
309(1)
13.8.4.2 TV Applications
309(1)
References
310(1)
14A Wet Etching Processes and Equipment 311(8)
Kazuo Jodai
14A.1 Introduction
311(1)
14A.2 Overview of TFT Process
312(1)
14A.3 Applications and Equipment of Wet Etching
313(4)
14A.3.1 Applications
313(1)
14A.3.2 Equipment (Outline)
313(2)
14A.3.3 Substrate Transferring System
315(1)
14A.3.4 Dip Etching System
316(1)
14A.3.5 Cascade Rinse System
316(1)
14A.4 Problems Due to Increased Mother Glass Size and Solutions
317(1)
14A.4.1 Etchant Concentration Management
317(1)
14A.4.2 Quick Rinse
317(1)
14A.4.3 Other Issues
318(1)
14A.5 Conclusion
318(1)
References
318(1)
14B Dry Etching Processes and Equipment 319(10)
Ippei Horikoshi
14B.1 Introduction
319(1)
14B.2 Principle of Dry Etching
319(3)
14B.2.1 Plasma
320(1)
14B.2.2 Ions
321(1)
14B.2.3 Radicals
321(1)
14B.3 Architecture for Dry Etching Equipment
322(1)
14B.4 Dry Etching Modes
323(2)
14B.4.1 Conventional Etching Mode and Each Characteristic
324(1)
14B.4.2 Current Etching Mode and Each Characteristic
325(1)
14B.5 TFT Process
325(3)
14B.5.1 a-Si Process
325(1)
14B.5.2 LTPS Process
326(1)
14B.5.3 Oxide Process
327(1)
References
328(1)
15 TFT Array: Inspection, Testing, and Repair 329(50)
Shulik Leshem
Noam Cohen
Savier Pham
Mike Lim
Amir Peled
15.1 Defect Theory
329(5)
15.1.1 Typical Production Defects
329(3)
15.1.1.1 Pattern Defects
329(2)
15.1.1.2 Foreign Particles
331(1)
15.1.2 Understanding the Nature of Defects
332(1)
15.1.2.1 Critical and Non-Critical Defects
332(1)
15.1.2.2 Electrical and Non-Electrical Defects
333(1)
15.1.3 Effect of Defects on Final FPD Devices and Yields
333(1)
15.2 AOI(Automated Optical Inspection)
334(18)
15.2.1 The Need
334(1)
15.2.2 AOI Tasks, Functions, and Sequences
335(2)
15.2.2.1 Image Acquisition
335(1)
15.2.2.2 Defect Detection
336(1)
15.2.2.3 Defect Classification
336(1)
15.2.2.4 Review Image Grabbing
337(1)
15.2.2.5 Defect Reporting and Judgment
337(1)
15.2.3 AOI Optical Concept
337(4)
15.2.3.1 Image Quality Criteria
338(1)
15.2.3.2 Scan Cameras
339(1)
15.2.3.2.1 Camera Type
339(1)
15.2.3.2.2 Resolution Changer
339(1)
15.2.3.2.3 Backside Inspection
339(1)
15.2.3.3 Scan Illumination
339(1)
15.2.3.3.1 Types of Illumination
339(1)
15.2.3.4 Video Grabbing for Defect Review and Metrology
340(1)
15.2.3.4.1 Review/Metrology Cameras
340(1)
15.2.3.4.2 On-the-Fly Video Grabbing
340(1)
15.2.3.4.3 Alternative to Video Images
340(1)
15.2.4 AOI Defect Detection Principles
341(3)
15.2.4.1 Gray Level Concept
342(1)
15.2.4.2 Comparison of Gray Level Values Between Neighboring Cells
342(1)
15.2.4.3 Detection Sensitivity
342(2)
15.2.4.4 Detection Selectivity
344(1)
15.2.5 AOI Special Features
344(6)
15.2.5.1 Detection of Special Defect Types
344(1)
15.2.5.2 Inspection of In-Cell Touch Panels
345(1)
15.2.5.3 Peripheral Area Inspection
346(1)
15.2.5.4 Mura Defects
346(1)
15.2.5.5 Cell Process Inspection
347(1)
15.2.5.6 Defect Classification
347(2)
15.2.5.7 Metrology: CD/O Measurement
349(1)
15.2.5.8 Automatic Judgment
350(1)
15.2.6 Offline Versus Inline AOI
350(1)
15.2.7 AOI Usage, Application and Trends
351(1)
15.3 Electrical Testing
352(11)
15.3.1 The Need
352(1)
15.3.2 Array Tester Tasks, Functions, and Sequences
353(3)
15.3.2.1 Panel Signal Driving
353(1)
15.3.2.1.1 Shorting Bar Probing Method
354(1)
15.3.2.1.2 Full Contact Probing Method
354(1)
15.3.2.2 Contact or Non-Contact Sensing
354(1)
15.3.2.2.1 Contact Sensing
355(1)
15.3.2.2.2 Non-Contact Sensing Methods
355(1)
15.3.2.3 Panel Image Processing and Defect Detection
355(1)
15.3.2.4 Post-Defect Detection Processes
355(1)
15.3.3 Array Tester System Design Concept
356(3)
15.3.3.1 Signal Driving Probing
357(1)
15.3.3.2 Ultra-High-Resolution Testing
357(1)
15.3.3.3 System TACT
358(1)
15.3.3.4 "High-Channel" Testing
358(1)
15.3.3.5 Advanced Process Technology Testing (AMOLED, FLEX OLED)
358(1)
15.3.4 Array Tester Special Features
359(2)
15.3.4.1 GOA, ASG, and IGD Testing
359(1)
15.3.4.2 Electro Mura Monitoring
359(2)
15.3.4.3 Free-Form Panel Testing
361(1)
15.3.5 Array Tester Usage, Application, and Trends
361(2)
15.3.5.1 Source Drain Layer Testing for LTPS LCD/OLED
362(1)
15.3.5.2 New Probing Concept
363(1)
15.3.5.3 In-Cell Touch Panel Testing
363(1)
15.4 Defect Repair
363(16)
15.4.1 The Need
363(1)
15.4.2 Repair System in the Production Process
364(1)
15.4.2.1 In-Process Repair
364(1)
15.4.2.2 Final Repair
364(1)
15.4.3 Repair Sequence
364(1)
15.4.4 Short-Circuit Repair Method
365(4)
15.4.4.1 Laser Ablation Concept
365(1)
15.4.4.1.1 Thermal Ablation
366(1)
15.4.4.1.2 Cold Ablation
366(1)
15.4.4.1.3 Photochemical Ablation
366(1)
15.4.4.2 Laser Light Wavelengths and their Typical Applications
366(1)
15.4.4.2.1 Laser Matter Interaction
366(1)
15.4.4.2.2 Using DUV Laser Light (266 nm) for Short-Circuit Defect Repair
367(1)
15.4.4.2.3 Using Infrared Laser Light (1,064 nm) for Short-Circuit Defect Repair
367(1)
15.4.4.3.4 Using Green Laser Light (532 nm) for Short-Circuit Defect Repair
367(1)
15.4.4.3 Typical Applications of the Short-Circuit Repair Method
367(1)
15.4.4.3.1 Cutting
367(1)
15.4.4.3.2 Welding
368(1)
15.4.5 Open-Circuit Repair Method
369(3)
15.4.5.1 LCVD (Laser Chemical Vapor Deposition)
369(1)
15.4.5.2 Metal Ink Deposition Repair
370(1)
15.4.5.2.1 Dispensing
370(1)
15.4.5.2.2 Metal Inkjet Deposition
370(1)
15.4.5.2.3 LIFT (Laser-Induced Forward Transfer) Deposition
371(1)
15.4.5.3 Main Applications of the Deposition Repair (Open-Circuit Repair)
372(1)
15.4.6 Photoresist (PR) Repair
372(3)
15.4.6.1 Main Applications of the Photoresist Repair
373(1)
15.4.6.2 Photoresist Repair Technology
373(1)
15.4.6.2.1 Using DMD for Patterning
373(1)
15.4.6.2.2 Using FSM for Patterning
373(2)
15.4.7 Special Features of the Repair System
375(1)
15.4.7.1 Line Defect Locator (LDL)
375(1)
15.4.7.2 Parallel Repair Mode for Maximum System Throughput
375(1)
15.4.8 Repair Technology Trends
376(1)
15.4.8.1 Cold Ablation
376(1)
15.4.8.2 Full Automatic Repair Solution
377(1)
15.4.9 Summary
377(2)
16 LCM Inspection and Repair 379(14)
Chun Chang Hung
16.1 Introduction
379(1)
16.2 Functional Defects Inspection
379(2)
16.3 Cosmetic Defects Inspection
381(2)
16.4 Key Factors for Proper Inspection
383(5)
16.4.1 Variation Between Inspectors
383(2)
16.4.2 Testing Environments
385(1)
16.4.3 Inspection Distance, Viewing Angle, and Sequence of Test Patterns
385(2)
16.4.4 Characteristics of Product and Components
387(1)
16.5 Automatic Optical Inspection (AOI)
388(1)
16.6 LCM Defect Repair
388(3)
References
391(2)
17 Productivity and Quality Control Overview 393(26)
Kozo Yano
Yasunori Nishimura
Masataka Itoh
17.1 Introduction
393(1)
17.2 Productivity Improvement
394(5)
17.2.1 Challenges for Productivity Improvement
394(1)
17.2.2 Enlargement of Glass Substrate
395(4)
17.2.2.1 Productivity Improvement and Cost Reduction by Glass Size Enlargement
397(2)
17.3 Yield Management
399(7)
17.3.1 Yield Analysis
399(5)
17.3.1.1 Inspection and Yield
399(2)
17.3.1.2 Failure Mode Analysis
401(3)
17.3.2 Yield Improvement Activity
404(2)
17.3.2.1 Process Yield Improvement
404(1)
17.3.2.2 Systematic Failure Minimization
404(1)
17.3.2.3 Random Failure Minimization by Clean Process
404(2)
17.3.2.4 Yield Improvement by Repairing
406(1)
17.4 Quality Control System
406(11)
17.4.1 Materials (IQC)
407(1)
17.4.2 Facility Control
408(1)
17.4.3 Process Quality Control
408(5)
17.4.3.1 TFT Array Process
409(1)
17.4.3.2 Color Filter Process
410(2)
17.4.3.3 LCD Cell Process
412(1)
17.4.3.4 Modulization Process
412(1)
17.4.4 Organization and Key Issues for Quality Control
413(4)
References
417(2)
18 Plant Architectures and Supporting Systems 419(22)
Kozo Yano
Michihiro Yamakawa
18.1 Introduction
419(1)
18.2 General Issues in Plant Architecture
420(3)
18.2.1 Plant Overview
420(2)
18.2.2 Plant Design Procedure and Baseline
422(1)
18.3 Clean Room Design
423(10)
18.3.1 Clean Room Evolution
423(1)
18.3.2 Floor Structure for Clean Room
424(1)
18.3.3 Clean Room Ceiling Height
424(3)
18.3.4 Air Flow and Circulation Design
427(1)
18.3.5 Cleanliness Control
428(1)
18.3.6 Air Flow Control Against Particle
428(3)
18.3.7 Chemical Contamination Countermeasures
431(2)
18.3.8 Energy Saving in FFU
433(1)
18.4 Supporting Systems with Environmental Consideration
433(4)
18.4.1 Incidental Facilities
433(1)
18.4.2 Water and Its Recycle
434(2)
18.4.3 Chemicals
436(1)
18.4.4 Gases
436(1)
18.4.5 Electricity
437(1)
18.5 Production Control System
437(3)
References
440(1)
19 Green Manufacturing 441(16)
YiLin Wei
Mona Yang
Matt Chien
19.1 Introduction
441(1)
19.2 Fabrication Plant (Fab) Design
441(2)
19.2.1 Fab Features
441(1)
19.2.2 Green Building Design
442(1)
19.3 Product Material Uses
443(4)
19.3.1 Material Types and Uses
443(1)
19.3.2 Hazardous Substance Management
444(2)
19.3.3 Material Hazard and Green Trend
446(1)
19.3.4 Conflict Minerals Control
446(1)
19.4 Manufacturing Features and Green Management
447(6)
19.4.1 The Manufacturing Processes
447(1)
19.4.2 Greenhouse Gas Inventory
448(1)
19.4.3 Energy Saving in Manufacturing
449(1)
19.4.4 Reduction of Greenhouse Gas from Manufacturing
449(2)
19.4.5 Air Pollution and Control
451(1)
19.4.6 Water Management and Emissions Control
452(1)
19.4.7 Waste Recycling and Reuse
453(1)
19.5 Future Challenges
453(1)
References
454(3)
Index 457
JUN SOUK, PHD is a Professor in the Department of Electronic Engineering, Hanyang University, South Korea.

SHINJI MOROZUMI, PHD is the founder and chairman of Crystage Inc., Japan.

FANG-CHEN LUO, PHD is advisor to the President and Fellow of AU Optronics, Taiwan.

ION BITA, PHD leads development of display technologies and components at Apple Inc., USA.