Muutke küpsiste eelistusi

FLP Microsatellite Platform: Flight Operations Manual 1st ed. 2016 [Kõva köide]

Edited by
  • Formaat: Hardback, 680 pages, kõrgus x laius: 235x155 mm, kaal: 1546 g, 56 Illustrations, color; 210 Illustrations, black and white; XXVI, 680 p. 266 illus., 56 illus. in color., 1 Hardback
  • Sari: Springer Aerospace Technology
  • Ilmumisaeg: 17-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319235028
  • ISBN-13: 9783319235028
  • Kõva köide
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 275,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 680 pages, kõrgus x laius: 235x155 mm, kaal: 1546 g, 56 Illustrations, color; 210 Illustrations, black and white; XXVI, 680 p. 266 illus., 56 illus. in color., 1 Hardback
  • Sari: Springer Aerospace Technology
  • Ilmumisaeg: 17-Dec-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319235028
  • ISBN-13: 9783319235028
This book represents the Flight Operations Manual for a reusable microsatellite platform - the "Future Low-cost Platform" (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite "Flying Laptop" from the University.The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS).Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement

the book.

Introduction to the Microsatellite Platform.-The FLP Platform Operability.-Data Handling and Control Concept.- Core Data Handling Subsystem.-Power Control Subsystem.-Platform Communication Subsystem.-Attitude Control Subsystem.-Thermal Control Subsystem.-Payload Control Subsystem.-Failure Detection, Isolation and Recovery Concept.-Satellite Mission Phases and Planning.-Stuttgart Mission Control Infrastructure.-Stuttgart / DLR Infrastructure for LEOP.-Earth Observation Mission Planning.-Flight Procedures.-FLP Mission Information Database.-Annexes and Data Sheets.

Arvustused

1 Introduction to the Microsatellite Platform
1(24)
Jens Eickhoff
1.1 The University Small Satellite Program
2(2)
1.2 Satellite Orbit
4(1)
1.3 Mechanical Design and Launcher Interface
4(1)
1.4 Technology and Pay loads
4(3)
1.5 Platform Re-usability
7(1)
1.6 Platform Redundancy Concept
8(2)
1.7 Power Subsystem and Electrical Block Diagram
10(2)
1.7.1 Solar Panels
10(1)
1.7.2 Battery
10(1)
1.7.3 The Power Control and Distribution Unit
11(1)
1.8 Core Data Handling Subsystem
12(1)
1.9 FLP Payload Control Computer
13(1)
1.10 Attitude Control Subsystem
14(5)
1.10.1 Sensors and Actuators
15(2)
1.10.2 Satellite System Modes
17(2)
1.11 Reaction Control Subsystem
19(1)
1.12 Communication Subsystem
20(1)
1.13 Thermal Control Subsystem
21(1)
1.14 Satellite Deorbiting at End of Life
22(1)
1.15 Possible Mechanical Platform Configurations
23(2)
2 The FLP Platform Operability
25(48)
Kai-Soren Klemich
Jens Eickhoff
2.1 Spacecraft Configuration Handling Concept
26(25)
2.1.1 System Mode Changes Using the OBSW Object Hierarchy
26(1)
2.1.2 Overview on the FLP Operational Modes
27(2)
2.1.3 Launch Mode
29(1)
2.1.4 Boot Mode
30(1)
2.1.5 Detumble/Safe Mode
30(1)
2.1.6 Idle Mode
31(1)
2.1.7 Coarse Nadir Pointing Mode
32(1)
2.1.8 Operational Modes---Ground Contact
32(1)
2.1.9 Operational Modes---Payload Operations
33(1)
2.1.10 None Mode
33(1)
2.1.11 Open Mode Concept
34(1)
2.1.12 Mode Tables and Sequences Control Service
34(13)
2.1.13 Spacecraft Equipment Operation Versus Modes
47(4)
2.2 Spacecraft Telecommand and Telemetry Structure
51(4)
2.2.1 CCSDS Protocol Addressing
51(3)
2.2.2 Spacecraft ID
54(1)
2.2.3 System Authentication
55(1)
2.3 Application Process ID Definitions (APIDs)
55(1)
2.4 PUS Tailoring Concept
56(13)
2.4.1 PUS-Service 1---Telecommand Verification
57(1)
2.4.2 PUS-Service 2---Device Command Distribution
57(2)
2.4.3 PUS-Service 3---Housekeeping and Diagnostic Reporting
59(1)
2.4.4 PUS-Service 4---Parameter Statistics Reporting
60(1)
2.4.5 PUS-Service 5---Event Reporting
60(1)
2.4.6 PUS-Service 6---Memory Management Service
61(1)
2.4.7 PUS-Service 8---Function Management Service
62(1)
2.4.8 PUS-Service 9---Time Management Service
62(1)
2.4.9 PUS-Service 11---On-board Operations Scheduling Service
63(1)
2.4.10 PUS-Service 12---On-board Monitoring Service
64(1)
2.4.11 PUS-Service 15---On-board Storage and Retrieval Service
65(1)
2.4.12 PUS-Service 17---Test Service
65(1)
2.4.13 PUS-Service 18---On-board Control Procedures Service
66(1)
2.4.14 PUS-Service 19---Event-Action Service
66(1)
2.4.15 PUS Service 200---Mode Control Service
66(1)
2.4.16 PUS-Service 201---Health Flag Control Service
67(1)
2.4.17 PUS-Service 202---Mode Tables and Sequences Control Service
67(1)
2.4.18 PUS-Service 203---Payload Control Service
68(1)
2.5 Spacecraft Commandability and Observability
69(1)
2.6 Spacecraft On-board Time Management
70(3)
3 Data Handling and Control Concept
73(30)
Ulrich Mohr
Bastian Batz
Jens Eickhoff
3.1 Onboard Software Architecture
74(6)
3.1.1 OBSW Hierarchy Concept
75(3)
3.1.2 Command/Reply Flow Through the OBSW
78(2)
3.2 OBSW Object Types
80(13)
3.2.1 Service Objects
81(1)
3.2.2 Device Handler Objects
81(5)
3.2.3 Assembly Objects
86(1)
3.2.4 Controller Objects
87(2)
3.2.5 Subsystem Objects
89(1)
3.2.6 Top-Level System Object
89(1)
3.2.7 Object Execution
89(1)
3.2.8 OBSW Object-IDs and PRIDs
90(3)
3.3 Observability Functions Provided by the OBSW
93(2)
3.3.1 Command Verification
93(1)
3.3.2 Cyclic HK
93(1)
3.3.3 Event Messages
94(1)
3.4 FLP Software Dynamic Architecture
95(7)
3.4.1 Process/Task Management
96(1)
3.4.2 Object Tasks
97(1)
3.4.3 Polling Sequence Table
98(2)
3.4.4 Dynamic Scheduling
100(1)
3.4.5 Modes versus Actions
100(2)
3.5 Onboard Software Death Report
102(1)
4 Core Data Handling Subsystem
103(18)
Jens Eickhoff
Rouven Witt
Bastian Batz
4.1 On-Board Data Handling Subsystem
104(1)
4.2 Combined Data and Power Management Infrastructure
104(5)
4.2.1 The PCDU as Analog RIU
106(1)
4.2.2 A Combined-Controller for Power and DHS FDIR
106(1)
4.2.3 Completeness of System Architecture
107(2)
4.3 Data Management
109(3)
4.3.1 PROM Data
110(1)
4.3.2 I/O-Board Persistent RAM
111(1)
4.3.3 OBC RAM and PROM Direct Access
111(1)
4.4 System Boot at Launcher Separation
112(2)
4.5 OBSW Controlled Functions
114(1)
4.6 Core DHS Subsystem Control
115(6)
4.6.1 I/O-Board Handler
115(2)
4.6.2 I/O-Board Assembly
117(1)
4.6.3 Core DHS Controller
118(1)
4.6.4 Core DHS Mode Transitions and Telemetry
119(2)
5 Power Supply Subsystem
121(52)
Kai-Soren Klemich
Bastian Batz
5.1 Subsystem Overview
122(1)
5.2 Solar Panels
123(1)
5.3 Solar Array Deployment Mechanism
124(3)
5.4 Battery
127(7)
5.4.1 General Monitoring
129(2)
5.4.2 Battery SoC Estimation
131(2)
5.4.3 Operating the Battery
133(1)
5.5 Power Control and Distribution Unit
134(12)
5.5.1 Power Control and Distribution Functions
135(4)
5.5.2 PCDU Design Overview
139(2)
5.5.3 PCDU Boot-up Sequence and PCDU Modes
141(2)
5.5.4 Specific PCDU Functions in the CDPI Architecture
143(1)
5.5.5 Diverse PCDU Functions
144(2)
5.6 Power Subsystem Control
146(27)
5.6.1 PCDU Device Handler
148(1)
5.6.2 PSS Controller
148(8)
5.6.3 Power Subsystem Mode Transitions and Telemetry
156(3)
5.6.4 Power Subsystem Object-IDs, Controller Variables and Limits
159(1)
5.6.5 Power Subsystem Variables, Limits, and Parameters
160(13)
6 Platform Communication Subsystem
173(22)
Jens Eickhoff
Kai-Soren Klemich
6.1 TTC Subsystem Overview
174(3)
6.2 Signal Acquisition Procedure
177(1)
6.3 TTC Subsystem Control
178(17)
6.3.1 TTC Subsystem Device Handlers
179(3)
6.3.2 TTC Subsystem Assemblies
182(1)
6.3.3 TTC Subsystem Object-IDs
183(1)
6.3.4 TTC Controller
184(2)
6.3.5 TTC Subsystem Mode Transitions and Telemetry
186(9)
7 Attitude Control Subsystem
195(50)
Oliver Zeile
Ulrich Mohr
Bastian Batz
Nico Bucher
7.1 Subsystem Overview
196(1)
7.2 Mission Objectives and ACS Subsystem Modes
197(1)
7.3 Magnetometers
197(1)
7.4 Sun Sensor Unit
198(2)
7.5 GPS Receiver System
200(1)
7.6 Fiberoptic Gyroscopes
201(2)
7.7 Star Tracker
203(1)
7.8 Reaction Wheels
204(1)
7.9 Magnetotorquers
205(1)
7.10 Extensions for FLP Generation 2
206(2)
7.11 ACS Subsystem Control
208(37)
7.11.1 ACS Subsystem Modes
209(1)
7.11.2 ACS Device Handlers
209(12)
7.11.3 ACS Assemblies
221(4)
7.11.4 ACS Controller
225(6)
7.11.5 ACS Subsystem Mode Transitions and Telemetry
231(14)
8 Thermal Control Subsystem
245(26)
Fabian Steinmetz
Sebastian Keil
8.1 Thermal Subsystem Overview
246(8)
8.2 Sensors, Calibration, Limits
254(2)
8.3 TCS Subsystem Control
256(15)
8.3.1 Initial Control Concept
258(2)
8.3.2 TCS Controller
260(9)
8.3.3 TCS Subsystem Mode Transitions and Telemetry
269(2)
9 Pay load Control Subsystem
271(20)
Philipp Hagel
Paul Walker
Jens Eickhoff
9.1 Aspects of Payload Control and Data Handling
272(3)
9.1.1 Payload Control via the Platform OBC
273(1)
9.1.2 Payload Control via Dedicated PMC
273(2)
9.2 Payload Control on the First FLP Based Satellite
275(7)
9.2.1 PMC Hardware
275(2)
9.2.2 PMC Mainboard Elements and Function
277(1)
9.2.3 PMC Software
278(4)
9.3 Payload Control in Network-Centric Architectures
282(9)
9.3.1 FLP Generation Space Wire Network 2
283(4)
9.3.2 FLP Generation 2 Target Architecture
287(4)
10 Failure Detection, Isolation and Recovery Concept
291(114)
Rouven Witt
Jens Eickhoff
10.1 General Principles
292(12)
10.1.1 Applying ECSS Terminology
292(1)
10.1.2 FDIR Requirements
293(2)
10.1.3 Fault Tolerance Through Redundancy
295(2)
10.1.4 Redundancy on FLP
297(1)
10.1.5 Three Stages of Device Failure Detection
298(1)
10.1.6 System Failure Detection
298(1)
10.1.7 Event Utilization
299(1)
10.1.8 Event Flow
300(2)
10.1.9 Failure Event Management
302(2)
10.2 Core DHS FDIR
304(28)
10.2.1 Component Functions During Failure Handling
305(2)
10.2.2 PCDU as Reconfiguration Unit
307(3)
10.2.3 Reconfiguration Sequence
310(8)
10.2.4 HPC-Based Spacecraft Reconfiguration
318(3)
10.2.5 Software Watchdog
321(2)
10.2.6 Software (Re-) Boot
323(3)
10.2.7 Data Transmission Between I/O-Boards
326(1)
10.2.8 PCDU Automated Fault Management
327(1)
10.2.9 IO- and CCSDS-Board SpaceWire FDIR
327(1)
10.2.10 Memory EDAC/TM Store Integrity
327(1)
10.2.11 Spacecraft State and Configuration Vector
328(1)
10.2.12 SW Watchdog for FLP Generation 2
329(1)
10.2.13 Events in the Core DHS FDIR
329(3)
10.3 Power FDIR
332(21)
10.3.1 Battery State-of-Charge Surveillance
333(3)
10.3.2 Voltage Levels and Fuse Currents
336(2)
10.3.3 Failure Handling for PSS Devices
338(10)
10.3.4 System Reactions
348(1)
10.3.5 PSS FDIR Events
349(4)
10.4 Equipment FDIR
353(8)
10.4.1 Device Failure Versus I/O-Board Failure Symptoms
353(3)
10.4.2 Device Failure Isolation and Recovery
356(3)
10.4.3 Failure and Boot Counter Evaluation
359(2)
10.4.4 Device Handler FDIR Events
361(1)
10.5 TTC FDIR
361(5)
10.5.1 Receiver Failure Handling
361(3)
10.5.2 Transmitter Failure Handling
364(1)
10.5.3 Transceiver Health Monitoring
364(1)
10.5.4 CCSDS-Board FDIR
365(1)
10.5.5 Communication System Events
366(1)
10.6 ACS FDIR
366(23)
10.6.1 Magnetometer Failure Detection
367(1)
10.6.2 GPS Sensor Failure Detection
368(4)
10.6.3 Star Tracker System Failure Detection
372(2)
10.6.4 Sun Sensor Failure Detection
374(1)
10.6.5 Fiber Optic Gyro Failure Detection
375(2)
10.6.6 Magnetotorquer Failure Detection
377(2)
10.6.7 Reaction Wheel Failure Detection
379(2)
10.6.8 Attitude Control System Failure Detection
381(3)
10.6.9 ACS Autonomy
384(1)
10.6.10 ACS Events
384(5)
10.7 TCS FDIR
389(7)
10.7.1 TCS Failure Detection and Isolation
389(3)
10.7.2 TCS Failure Recovery
392(1)
10.7.3 TCS Survival Mode
393(2)
10.7.4 TCS FDIR Events
395(1)
10.8 Payload FDIR
396(4)
10.8.1 General Failure Handling
397(3)
10.8.2 Payload FDIR Events
400(1)
10.9 Failure Propagation
400(1)
10.10 Satellite Safe Mode Implementation
401(1)
10.11 Ground Based FDIR
402(3)
10.11.1 Observability of the Space Segment
402(1)
10.11.2 Commandability of the Space Segment
403(1)
10.11.3 Ground Analyses
404(1)
11 Satellite Mission Phases and Planning
405(16)
Jens Eickhoff
Michael Lengowski
Kai-Soren Klemich
11.1 Overview
406(1)
11.2 Launcher Mechanical Interface
407(2)
11.3 Launcher Electrical Interface
409(1)
11.4 Activities Before Launcher Integration
410(2)
11.5 Pre-launch Activities and Checks
412(1)
11.6 Launch and Early Orbit Phase
413(4)
11.6.1 Spacecraft Power-up to Safe Mode
413(2)
11.6.2 Spacecraft Link Establishment
415(1)
11.6.3 Initial System Checkout
416(1)
11.7 Platform Equipment Commissioning in Orbit
417(2)
11.8 Nominal Operation Phase
419(1)
11.9 End of Life Phase
419(2)
12 Stuttgart Mission Control Infrastructure
421(30)
Jens Eickhoff
Nico Bucher
Maximilian Bottcher
Charles Thibaut
Dougie Johnman
Bryan Tatman
12.1 Platform Control Infrastructure
422(24)
12.1.1 Digital TM/TC Processing Components
424(4)
12.1.2 RF Signal Processing
428(13)
12.1.3 The High Frequency Chain
441(1)
12.1.4 The Antenna System
442(4)
12.2 Flight Dynamics Infrastructure
446(2)
12.3 Spacecraft Link Establishment Process
448(1)
12.4 Science Data Signal Chain
448(3)
13 Stuttgart/DLR Infrastructure for LEOP
451(16)
Peter Willburger
Klaus Wiedemann
Rolf Kozlowski
Marcin Gnat
Ciprian Furtuna
Jens Eickhoff
Nico Bucher
13.1 Link Between IRS and the DLR Antenna Station
452(1)
13.2 DLR Antenna Station Infrastructure
453(4)
13.3 GSOC Systems Supporting the FLP Mission
457(5)
13.3.1 Space Link Extension (SLE) System
457(3)
13.3.2 Automated File Distribution System
460(2)
13.4 Operations Workflow
462(5)
13.4.1 Scheduling Process
462(2)
13.4.2 LEOP Phase
464(1)
13.4.3 Commissioning Phase
464(1)
13.4.4 Routine Phase
465(2)
14 Earth Observation Mission Planning
467(14)
Kai-Soren Klemich
Gianluca Cerrone
Wolfgang Heinen
14.1 MOIS Infrastructure
468(4)
14.2 Scheduler Resource Model
472(1)
14.3 Mission Planning Infrastructure and Work Flow
473(8)
15 Flight Procedures
481(12)
Kai-Soren Klemich
Jens Eickhoff
15.1 Definitions for FLP Flight Procedures
482(1)
15.2 Types of Procedures
482(4)
15.2.1 Types of Procedures by Content
482(2)
15.2.2 Types of Procedures by Usage Scenario
484(2)
15.3 Flight Procedure Naming Convention
486(1)
15.4 Flight Procedure Example
486(6)
15.5 List of FLP Flight Procedures
492(1)
16 FLP Mission Information Database
493(14)
Kai-Soren Klemich
Jens Eickhoff
16.1 Introduction
494(1)
16.2 General Concepts
494(4)
16.3 Telecommands and TC Sequence Tables
498(1)
16.4 TM Packet Definitions and Identification
499(3)
16.5 TM Parameter and Displays Tables
502(1)
16.6 TM Parameter Identification
503(2)
16.7 Parameter Format Definition
505(2)
17 Annexes and Data Sheets
507(160)
Jens Eickhoff
17.1 Software Constants and FDIR Limits
508(1)
17.2 Polling Sequence Table for I/O-Board Access
509(3)
17.3 Spacecraft Telecommand/Telemetry Definitions
512(104)
17.3.1 Telecommand Definitions
512(44)
17.3.2 Telemetry Definitions
556(1)
17.3.3 Event Telemetry Definitions
556(60)
17.4 FLP Flight Procedures
616(7)
17.5 TTC Subsystem Data Sheets
623(8)
17.5.1 Bit Error Rate Reference Data
623(1)
17.5.2 TTC Housekeeping Parameter Reference Data
624(7)
17.6 TC/TM Link Budgets for the IRS Antenna Station
631(4)
17.7 Power Subsystem Data Sheets
635(7)
17.7.1 PCDU Switch and Fuse Allocation
635(2)
17.7.2 Power Consumption Versus Modes
637(5)
17.7.3 Power Budget
642(1)
17.8 TCS Subsystem Data Sheets
642(5)
17.9 Mass Budget
647(1)
17.10 Orbit Analysis
648(11)
17.10.1 Orbit Environment
648(1)
17.10.2 Orbit Definition for the FLP Mission Flying Laptop
649(2)
17.10.3 Longitudinal Displacement per Pass and Orbit Repeat Cycle
651(1)
17.10.4 Contact to IRS and Other Ground Stations
652(3)
17.10.5 Sun, Umbra and Penumbra Phases
655(2)
17.10.6 Orbital Drift
657(2)
17.10.7 Multi-angle Earth Observation
659(1)
17.11 Spacecraft Skin Connector Panel Layout
659(5)
17.12 Red-Tagged Items
664(1)
17.13 Green-Tagged Items
664(1)
17.14 Two Line Element Orbit Data Definitions
665(2)
References 667(8)
Index 675