Muutke küpsiste eelistusi

Food Emulsions: Principles, Practices, and Techniques, Third Edition 3rd edition [Kõva köide]

(University of Massachusetts, Amherst, USA)
  • Formaat: Hardback, 714 pages, kõrgus x laius: 254x178 mm, kaal: 1406 g, 30 Tables, black and white; 352 Illustrations, black and white
  • Ilmumisaeg: 21-Aug-2015
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498726682
  • ISBN-13: 9781498726689
Teised raamatud teemal:
  • Formaat: Hardback, 714 pages, kõrgus x laius: 254x178 mm, kaal: 1406 g, 30 Tables, black and white; 352 Illustrations, black and white
  • Ilmumisaeg: 21-Aug-2015
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498726682
  • ISBN-13: 9781498726689
Teised raamatud teemal:
Continuing the mission of the first two editions, Food Emulsions: Principles, Practices, and Techniques, Third Edition covers the fundamentals of emulsion science and demonstrates how this knowledge can be applied to control the appearance, stability, and texture of emulsion-based foods. Initially developed to fill the need for a single resource covering all areas of food emulsion formation, stability, characterization, and application, the first two editions raised the bar for references in this field. This third edition is poised to do the same.

See Whats New in the Third Edition:











New chapters have been added on Emulsion-Based Delivery Systems and the Gastrointestinal Fate of Emulsions All chapters have been revised and updated, including new methods of fabricating and characterizing emulsions New figures have been included, and previous ones have been redrawn

As in previous editions, the main focus of this book is on presenting the fundamental principles of emulsion science and technology that underlie all types of emulsion-based food products. It highlights practical applications and provides an overview of modern areas of research. Figures and diagrams add emphasis to important concepts and present the underlying theory in a clear and approachable manner. These features and more give you a firm grounding in basic principles that will aid in the rational design of new products, the improvement of existing products, and the more rapid solution of processing problems.
Preface xxi
Author xxiii
1 Context and Background 1(28)
1.1 Emulsion Science and Technology in the Food Industry
1(1)
1.2 General Characteristics of Food Emulsions
2(6)
1.2.1 Definitions
2(4)
1.2.2 Mechanisms of Emulsion Instability
6(1)
1.2.3 Ingredient Partitioning in Emulsions
6(1)
1.2.4 Dynamic Nature of Emulsions
7(1)
1.2.5 Complexity of Food Emulsions
7(1)
1.3 Emulsion Properties
8(12)
1.3.1 Dispersed-Phase Volume Fraction
8(1)
1.3.2 Particle Size
9(9)
1.3.2.1 Collecting Particle Size Data
10(1)
1.3.2.2 Presenting Particle Size Data
10(3)
1.3.2.3 Mean and Standard Deviation
13(2)
1.3.2.4 Mathematical Models
15(3)
1.3.3 Interfacial Properties
18(1)
1.3.4 Droplet Charge
18(1)
1.3.5 Droplet Crystallinity
19(1)
1.3.6 Droplet Interactions
20(1)
1.4 Hierarchy of Emulsion Properties
20(1)
1.5 Understanding Food Emulsion Properties
21(4)
1.5.1 Factors Influencing Topics and Directions of Research
22(1)
1.5.2 General Approaches Used to Study Food Emulsions
23(2)
1.6 Overview and Philosophy
25(1)
References
26(3)
2 Molecular Characteristics 29(26)
2.1 Introduction
29(1)
2.2 Forces of Nature
30(1)
2.3 Origin and Nature of Molecular Interactions
30(8)
2.3.1 Covalent Interactions
30(1)
2.3.2 Electrostatic Interactions
31(3)
2.3.3 Van der Waals Interactions
34(2)
2.3.4 Steric Overlap Interactions
36(2)
2.4 Overall Intermolecular Pair Potential
38(1)
2.4.1 Lennard—Jones Potential: Understanding Bond Strengths and Lengths
38(1)
2.4.2 Thermal Energy: Judging Bond Strengths
38(1)
2.4.3 Converting Potential Energies into Forces
39(1)
2.5 Molecular Structure and Organization Is Determined by a Balance of Interaction Energies and Entropy Effects
39(4)
2.5.1 Forms of Entropy
40(1)
2.5.2 Physicochemical Basis of Molecular Transitions
41(2)
2.6 Thermodynamics of Mixing
43(3)
2.6.1 Potential Energy Change on Mixing
43(1)
2.6.2 Entropy Change on Mixing
44(1)
2.6.3 Overall Free Energy Change on Mixing
44(2)
2.6.4 Complications
46(1)
2.7 Molecular Conformation
46(2)
2.8 Compound Interactions
48(1)
2.8.1 Hydrogen Bonds
48(1)
2.8.2 Hydrophobic Interactions
49(1)
2.9 Computer Modeling of Liquid Properties
49(2)
2.9.1 Monte Carlo Techniques
50(1)
2.9.2 Molecular Dynamics Techniques
50(1)
2.10 Measurement of Molecular Characteristics
51(1)
References
52(3)
3 Colloidal Interactions 55(44)
3.1 Introduction
55(1)
3.2 Colloidal Interactions and Droplet Aggregation
55(3)
3.3 Van der Waals Interactions
58(6)
3.3.1 Origin of van der Waals Interactions
58(1)
3.3.2 Modeling van der Waals Interactions
58(6)
3.3.2.1 Interdroplet Pair Potential
58(1)
3.3.2.2 Hamaker Function
59(5)
3.3.3 General Features of van der Waals Interactions
64(1)
3.4 Electrostatic Interactions
64(6)
3.4.1 Origins of Electrostatic Interactions
64(1)
3.4.2 Modeling Electrostatic Interactions
64(5)
3.4.2.1 Interdroplet Pair Potential
64(2)
3.4.2.2 Factors Influencing Electrical Characteristics of Surfaces
66(2)
3.4.2.3 Influence of Ionic Strength on the Magnitude and Range of Interactions
68(1)
3.4.2.4 Influence of Ion Bridging on Electrostatic Interactions
69(1)
3.4.3 General Characteristics of Electrostatic Interactions
69(1)
3.5 Steric Interactions
70(6)
3.5.1 Origin of Steric Interactions
70(1)
3.5.2 Modeling Steric Interactions
71(4)
3.5.2.1 Interdroplet Pair Potential
71(1)
3.5.2.2 Mixing Contribution
71(2)
3.5.2.3 Elastic Contribution
73(1)
3.5.2.4 Distance Dependence of Steric Interactions
74(1)
3.5.2.5 Optimum Characteristics of Steric Stabilizers
74(1)
3.5.3 General Characteristics of Steric Interactions
75(1)
3.6 Depletion Interactions
76(4)
3.6.1 Origin of Depletion Interactions
76(1)
3.6.2 Modeling of Depletion Interactions
77(3)
3.6.3 General Characteristics of Depletion Interactions
80(1)
3.7 Hydrophobic Interactions
80(2)
3.7.1 Origin of Hydrophobic Interactions
80(1)
3.7.2 Modeling Hydrophobic Interactions
81(1)
3.7.3 General Characteristics of Hydrophobic Interactions
81(1)
3.8 Hydration Interactions
82(3)
3.8.1 Origin of Hydration Interactions
82(1)
3.8.2 Modeling Hydration Interactions
83(1)
3.8.3 General Characteristics of Hydration Interactions
84(1)
3.9 Thermal Fluctuation Interactions
85(1)
3.9.1 Origin of Thermal Fluctuation Interactions
85(1)
3.9.2 Modeling Thermal Fluctuation Interactions
85(1)
3.9.3 General Characteristics of Fluctuation Interactions
86(1)
3.10 Nonequilibrium Effects
86(2)
3.10.1 Molecular Rearrangements at the Interface
86(1)
3.10.2 Hydrodynamic Flow of Continuous Phase
86(1)
3.10.3 Gibbs—Marangoni Effect
87(1)
3.11 Total Interaction Potential
88(6)
3.11.1 Van der Waals and Steric Interactions
88(2)
3.11.2 Van der Waals, Steric, and Electrostatic Interactions
90(2)
3.11.3 Van der Waals, Steric, Electrostatic, and Hydrophobic Interactions
92(1)
3.11.4 Van der Waals, Steric, Electrostatic, and Depletion Interactions
93(1)
3.12 Measurement of Colloidal Interactions
94(1)
3.13 Prediction of Colloidal Interactions in Food Emulsions
94(1)
References
95(4)
4 Emulsion Ingredients 99(86)
4.1 Introduction
99(1)
4.2 Fats and Oils
100(15)
4.2.1 Molecular Structure and Organization
101(1)
4.2.2 Bulk Physicochemical Properties
102(2)
4.2.3 Fat Crystallization
104(9)
4.2.3.1 Supercooling
105(1)
4.2.3.2 Nucleation
106(3)
4.2.3.3 Crystal Growth
109(1)
4.2.3.4 Crystal Morphology
110(1)
4.2.3.5 Polymorphism
110(1)
4.2.3.6 Crystallization of Edible Fats and Oils
111(1)
4.2.3.7 Fat Crystallization in Emulsions
112(1)
4.2.4 Chemical Changes
113(1)
4.2.5 Selection of an Appropriate Lipid
114(1)
4.2.5.1 Nutritional Profile
114(1)
4.2.5.2 Flavor Profile
114(1)
4.2.5.3 Crystallization Behavior
114(1)
4.2.5.4 Oxidative Stability
115(1)
4.2.5.5 Bulk Physicochemical Properties
115(1)
4.2.5.6 Oil Quality
115(1)
4.3 Water
115(10)
4.3.1 Molecular Structure and Organization
116(1)
4.3.2 Bulk Physicochemical Properties
117(1)
4.3.3 Influence of Solutes on the Organization of Water Molecules
117(7)
4.3.3.1 Interaction of Water with Ionic Solutes
118(3)
4.3.3.2 Interaction of Water with Polar Solutes
121(1)
4.3.3.3 Interaction of Water with Nonpolar Solutes: The Hydrophobic Effect
122(2)
4.3.4 Influence of Solutes on the Physicochemical Properties of Solutions
124(1)
4.3.5 Selection of an Appropriate Aqueous Phase
124(1)
4.4 Emulsifiers
125(26)
4.4.1 Surfactants
125(17)
4.4.1.1 Molecular Characteristics
125(2)
4.4.1.2 Physicochemical Properties
127(6)
4.4.1.3 Surfactant Classification Schemes
133(7)
4.4.1.4 Common Food-Grade Surfactants
140(2)
4.4.2 Amphiphilic Biopolymers
142(7)
4.4.2.1 Molecular Characteristics
142(1)
4.4.2.2 Interfacial Activity and Emulsion Stabilization
143(2)
4.4.2.3 Biopolymer-Based Food Emulsifiers
145(4)
4.4.2.4 Protein—Polysaccharide Complexes
149(1)
4.4.3 Selection of an Appropriate Emulsifier
149(2)
4.5 Texture Modifiers
151(19)
4.5.1 Thickening Agents
151(5)
4.5.1.1 Effective Volume of Biopolymers in Aqueous Solutions
151(1)
4.5.1.2 Relationship between Biopolymer Molecular Structure and Effective Volume in Solution
152(1)
4.5.1.3 Viscosity Enhancement by Biopolymers in Solution
153(1)
4.5.1.4 Shear-Thinning in Biopolymer Solutions
154(2)
4.5.2 Gelling Agents
156(4)
4.5.3 Commonly Used Texture Modifiers
160(9)
4.5.3.1 Polysaccharides
161(5)
4.5.3.2 Proteins
166(1)
4.5.3.3 Biopolymer Blends
167(2)
4.5.4 Selection of an Appropriate Texture Modifier
169(1)
4.6 Other Food Additives
170(5)
4.6.1 pH Control
170(1)
4.6.2 Minerals
170(1)
4.6.3 Chelating Agents
171(1)
4.6.4 Antioxidants
171(1)
4.6.5 Antimicrobial Agents
172(1)
4.6.6 Flavors
173(1)
4.6.7 Colorants
173(1)
4.6.8 Weighting Agents
174(1)
4.6.9 Fat Replacers
174(1)
4.7 Factors Influencing Ingredient Selection
175(1)
References
176(9)
5 Interfacial Properties and Their Characterization 185(60)
5.1 Introduction
185(1)
5.2 General Characteristics of Interfaces
186(6)
5.2.1 Interfaces Separating Two Pure Liquids
186(2)
5.2.2 Interfaces in the Presence of Solutes
188(4)
5.3 Adsorption of Solutes to Interfaces
192(8)
5.3.1 Definition of Surface Excess Concentration
192(2)
5.3.1.1 Gas—Liquid Interface in the Absence of Solutes
192(1)
5.3.1.2 Gas—Liquid Interface in the Presence of Solutes
193(1)
5.3.1.3 Liquid—Liquid Interfaces
193(1)
5.3.2 Relationship between Adsorbed and Bulk Solute Concentrations
194(2)
5.3.3 Stipulating Interfacial Properties of Surface-Active Solutes
196(1)
5.3.4 Adsorption Kinetics
197(3)
5.3.4.1 Movement of Molecules to the Vicinity of an Interface
197(2)
5.3.4.2 Attachment of Emulsifier Molecules to Interface
199(1)
5.4 Electrical Characteristics of Interfaces
200(8)
5.4.1 Origin of Interfacial Charge
200(2)
5.4.2 Ion Distribution near a Charged Interface
202(5)
5.4.2.1 Inner Region
205(2)
5.4.2.2 Outer Region
207(1)
5.4.3 Factors Influencing Interfacial Electrical Properties of Emulsions
207(1)
5.4.4 Characterization of Interfacial Electrical Properties
208(1)
5.5 Interfacial Composition and Its Characterization
208(4)
5.5.1 Factors Influencing Interfacial Composition
208(3)
5.5.2 Characterization of Interfacial Composition in Emulsions
211(1)
5.6 Interfacial Structure
212(10)
5.6.1 Factors Influencing Interfacial Structure
212(4)
5.6.2 Characterization of Interfacial Structure in Emulsions
216(6)
5.6.2.1 Microscopy Techniques
216(1)
5.6.2.2 Spectroscopy Techniques
217(1)
5.6.2.3 Interference Reflection Techniques
218(1)
5.6.2.4 Scattering Techniques
219(1)
5.6.2.5 Langmuir Trough Measurements
219(2)
5.6.2.6 Surface Force Measurements
221(1)
5.6.2.7 Calorimetry Techniques
221(1)
5.6.2.8 Biochemical Techniques
221(1)
5.7 Interfacial Tension and Its Measurement
222(7)
5.7.1 Factors Influencing Interfacial Tension
222(1)
5.7.2 Characterization of Interfacial Tension
222(7)
5.7.2.1 Du Nouy Ring Method
222(2)
5.7.2.2 Wilhelmy Plate Method
224(1)
5.7.2.3 Sessile and Pendant Drop Methods
225(1)
5.7.2.4 Drop Volume Method
226(1)
5.7.2.5 Spinning Drop Method
227(2)
5.8 Interfacial Rheology and Its Measurement
229(3)
5.8.1 Factors Influencing Interfacial Rheology
229(1)
5.8.2 Characterization of Interfacial Rheology
230(3)
5.8.2.1 Measurement of Interfacial Shear Rheology
230(1)
5.8.2.2 Measurement of Interfacial Dilational Rheology
231(1)
5.9 Chemical and Biochemical Properties of Interfaces
232(1)
5.10 Practical Implications of Interfacial Phenomena
233(5)
5.10.1 Properties of Curved Interfaces
233(1)
5.10.2 Contact Angles and Wetting
234(2)
5.10.3 Capillary Rise and Meniscus Formation
236(2)
5.10.4 Interfacial Phenomenon in Food Emulsions
238(1)
References
238(7)
6 Emulsion Formation 245(44)
6.1 Introduction
245(1)
6.2 Overview of Emulsion Formation
245(3)
6.3 Flow Profiles in Homogenizers
248(3)
6.4 Physical Principles of Emulsion Formation
251(9)
6.4.1 Droplet Disruption
251(7)
6.4.1.1 Interfacial Forces
252(1)
6.4.1.2 Disruptive Forces
252(5)
6.4.1.3 Role of the Emulsifier in Droplet Disruption
257(1)
6.4.1.4 Role of Nonideal Fluid Behavior on Droplet Disruption
257(1)
6.4.2 Droplet Coalescence
258(1)
6.4.3 Role of the Emulsifier
259(1)
6.5 Homogenization Devices
260(12)
6.5.1 High Shear Mixers
260(1)
6.5.2 Colloid Mills
261(1)
6.5.3 High-Pressure Valve Homogenizers
262(3)
6.5.4 Microfluidization
265(1)
6.5.5 Ultrasonic Homogenizers
266(1)
6.5.6 Membrane and Microchannel Homogenizers
267(2)
6.5.7 Homogenization Efficiency
269(1)
6.5.8 Comparison of Homogenizers
270(2)
6.6 Factors Influencing Droplet Size
272(6)
6.6.1 Emulsifier Type and Concentration
272(2)
6.6.2 Energy Input
274(2)
6.6.3 Properties of Component Phases
276(1)
6.6.4 Temperature
277(1)
6.6.5 Predicting Droplet Sizes Produced by Homogenization
278(1)
6.7 Low-Energy Homogenization Methods
278(2)
6:7.1 Spontaneous Emulsification
279(1)
6.7.2 Emulsion Inversion Point Methods
279(1)
6.7.3 Phase Inversion Temperature Methods
279(1)
6.7.4 Comparison with High-Energy Methods
280(1)
6.8 Demulsification
280(3)
6.8.1 Nonionic Surfactants
281(1)
6.8.2 Ionic Surfactants
282(1)
6.8.3 Biopolymer Emulsifiers
282(1)
6.8.4 General Methods of Demulsification
283(1)
6.8.5 Selection of the Most Appropriate Demulsification Technique
283(1)
6.9 Future Developments
283(1)
References
284(5)
7 Emulsion Stability 289(94)
7.1 Introduction
289(1)
7.2 Thermodynamic and Kinetic Stability of Emulsions
290(3)
7.2.1 Thermodynamic Stability
290(2)
7.2.2 Kinetic Stability
292(1)
7.3 Gravitational Separation
293(17)
7.3.1 Physical Basis of Gravitational Separation
294(10)
7.3.1.1 Stokes' Law
294(1)
7.3.1.2 Deviations from Stokes' Law
295(9)
7.3.2 Methods of Controlling Gravitational Separation
304(3)
7.3.2.1 Minimizing Density Difference
304(2)
7.3.2.2 Reducing Droplet Size
306(1)
7.3.2.3 Modifying Continuous Phase Rheology
306(1)
7.3.2.4 Increasing Droplet Concentration
306(1)
7.3.2.5 Altering the Degree of Droplet Flocculation
306(1)
7.3.3 Experimental Characterization of Gravitational Separation
307(3)
7.4 Droplet Aggregation: General Features
310(2)
7.4.1 Droplet—Droplet Encounters
310(1)
7.4.2 Film Thinning
310(1)
7.4.3 Thin Film Formation
311(1)
7.4.4 Film Rupture
312(1)
7.5 Flocculation
312(22)
7.5.1 Physical Basis of Flocculation
312(6)
7.5.1.1 Collision Frequency
313(4)
7.5.1.2 Collision Efficiency
317(1)
7.5.1.3 Overall Particle Growth Rate
317(1)
7.5.2 Methods of Controlling Flocculation
318(10)
7.5.2.1 Collision Frequency
318(1)
7.5.2.2 Collision Efficiency
319(9)
7.5.3 Structure and Properties of Flocculated Emulsions
328(3)
7.5.3.1 Influence of Colloidal Interactions on Floc Structure
328(1)
7.5.3.2 Use of Fractal Geometry to Describe Floc Structure
329(1)
7.5.3.3 Influence of Floc Structure on Emulsion Properties
330(1)
7.5.4 Experimental Measurement of Flocculation
331(3)
7.5.4.1 Microscopy Methods
331(1)
7.5.4.2 Particle Sizing Methods
332(1)
7.5.4.3 Bulk Physicochemical Properties
333(1)
7.6 Coalescence
334(17)
7.6.1 Physical Basis of Coalescence
334(8)
7.6.1.1 Physical and Molecular Processes Associated with Coalescence
335(1)
7.6.1.2 Mechanisms of Film Rupture
336(2)
7.6.1.3 Hole Formation
338(1)
7.6.1.4 Rate-Limiting Step for Coalescence
339(2)
7.6.1.5 Modeling Droplet Growth due to Coalescence
341(1)
7.6.2 Methods of Controlling Coalescence
342(1)
7.6.2.1 Prevention of Droplet Contact
342(1)
7.6.2.2 Prevention of Rupture of Interfacial Layers
343(1)
7.6.3 Factors Affecting Coalescence
343(3)
7.6.3.1 Emulsifier Type
343(1)
7.6.3.2 Influence of Environmental Conditions
344(2)
7.6.3.3 Influence of Impurities and Surfaces
346(1)
7.6.4 Measurement of Droplet Coalescence
346(5)
7.6.4.1 Microscopy Methods
346(2)
7.6.4.2 Particle Sizing Methods
348(1)
7.6.4.3 Oiling Off Tests
348(1)
7.6.4.4 Accelerated Test Methods
349(2)
7.7 Partial Coalescence
351(7)
7.7.1 Physical Basis of Partial Coalescence
352(3)
7.7.2 Methods of Controlling Partial Coalescence
355(1)
7.7.2.1 Prevention of Close Contact
355(1)
7.7.2.2 Prevention of Interfacial Layer Disruption
356(1)
7.7.2.3 Control of Crystal Concentration, Structure, and Location
356(1)
7.7.3 Experimental Characterization of Partial Coalescence
356(2)
7.7.3.1 Fat Crystal Properties
357(1)
7.7.3.2 Emulsion Microstructure
357(1)
7.7.3.3 Macroscopic Properties
358(1)
7.8 Ostwald Ripening
358(7)
7.8.1 Physical Basis of Ostwald Ripening
358(3)
7.8.2 Methods of Controlling Ostwald Ripening
361(4)
7.8.2.1 Droplet Size Distribution
361(1)
7.8.2.2 Solubility
361(1)
7.8.2.3 Interfacial Layer
362(1)
7.8.2.4 Droplet Composition
362(3)
7.8.3 Experimental Characterization of Ostwald Ripening
365(1)
7.9 Phase Inversion
365(7)
7.9.1 Physical Basis of Phase Inversion
365(3)
7.9.1.1 Surfactant-Induced Phase Inversion
366(1)
7.9.1.2 Fat Crystallization—Induced Phase Inversion
367(1)
7.9.2 Methods of Controlling Phase Inversion
368(1)
7.9.2.1 Disperse Phase Volume Fraction
368(1)
7.9.2.2 Emulsifier Type and Concentration
368(1)
7.9.2.3 Mechanical Agitation
369(1)
7.9.2.4 Temperature
369(1)
7.9.3 Characterization of Phase Inversion
369(3)
7.9.3.1 Electrical Conductivity
370(1)
7.9.3.2 Rheology
370(1)
7.9.3.3 Optical Properties
370(1)
7.9.3.4 Microscopy
371(1)
7.9.3.5 Droplet Size Analysis
371(1)
7.9.3.6 Interfacial Tension
371(1)
7.9.3.7 Coalescence Stability
371(1)
7.9.3.8 Emulsion Miscibility
371(1)
7.10 Chemical and Biochemical Stability
372(1)
7.10.1 Lipid Oxidation
372(1)
7.10.2 Enzyme Hydrolysis
372(1)
7.10.3 Flavor and Color Degradation
372(1)
References
373(10)
8 Emulsion Rheology 383(54)
8.1 Introduction
383(1)
8.2 Rheological Properties of Materials
384(13)
8.2.1 Solids
384(2)
8.2.1.1 Ideal Elastic Solids
384(2)
8.2.1.2 Nonideal Elastic Solids
386(1)
8.2.2 Liquids
386(6)
8.2.2.1 Ideal Liquids
386(2)
8.2.2.2 Nonideal Liquids
388(4)
8.2.3 Plastics
392(2)
8.2.3.1 Ideal Plastics
393(1)
8.2.3.2 Nonideal Plastics
393(1)
8.2.4 Viscoelastic Materials
394(3)
8.2.4.1 Transient Tests
394(2)
8.2.4.2 Dynamic Tests
396(1)
8.3 Measurement of Rheological Properties
397(11)
8.3.1 Simple Compression and Elongation
398(2)
8.3.2 Shear Measurements
400(4)
8.3.2.1 Capillary Viscometers
400(1)
8.3.2.2 Mechanical Viscometers and Dynamic Rheometers
401(2)
8.3.2.3 Possible Sources of Experimental Error
403(1)
8.3.3 Advanced Rheological Methods
404(4)
8.3.3.1 Rheometers Combined with Other Analytical Methods
404(1)
8.3.3.2 Rheometers Utilizing Complex Deformation Profiles
405(1)
8.3.3.3 Thin Film Rheology (Tribology)
405(2)
8.3.3.4 Microrheology Methods
407(1)
8.3.3.5 Interfacial Rheology Methods
408(1)
8.3.4 Empirical Techniques
408(1)
8.4 Rheological Properties of Emulsions
408(17)
8.4.1 Dilute Suspensions of Rigid Spherical Particles
409(2)
8.4.2 Dilute Suspensions of Fluid Spherical Particles
411(1)
8.4.3 Dilute Suspensions of Rigid Nonspherical Particles
411(2)
8.4.4 Dilute Suspensions of Flocculated Particles
413(2)
8.4.5 Concentrated Suspensions in the Absence of Long-Range Colloidal Interactions
415(2)
8.4.6 Concentrated Suspensions with Repulsive Interactions
417(3)
8.4.7 Concentrated Suspensions with Attractive Interactions: Flocculated Systems
420(5)
8.4.8 Emulsions with Semisolid Continuous Phases
425(1)
8.5 Computer Simulation of Emulsion Rheology
425(2)
8.6 Major Factors Influencing Emulsion Rheology
427(4)
8.6.1 Disperse-Phase Volume Fraction
427(1)
8.6.2 Rheology of Component Phases
428(1)
8.6.3 Particle Size and Polydispersity
428(1)
8.6.4 Colloidal Interactions
429(1)
8.6.5 Droplet Charge
430(1)
8.7 Concluding Remarks and Future Directions
431(1)
References
432(5)
9 Emulsion Flavor 437(52)
9.1 Introduction
437(1)
9.2 Flavor Partitioning
438(11)
9.2.1 Partitioning between a Homogeneous Liquid and a Vapor
439(2)
9.2.2 Influence of Flavor Ionization
441(1)
9.2.3 Influence of Flavor Binding on Partitioning
442(2)
9.2.4 Influence of Surfactant Micelles on Partitioning
444(1)
9.2.5 Partitioning in Emulsions in the Absence of an Interfacial Layer
445(2)
9.2.6 Partitioning in Emulsions in the Presence of an Interfacial Layer
447(2)
9.3 Flavor Release
449(13)
9.3.1 Overview of the Physicochemical Process of Flavor Release
449(1)
9.3.2 Release of Nonvolatile Compounds (Taste)
449(5)
9.3.2.1 Maximum Amount of Flavor Released
450(1)
9.3.2.2 Kinetics of Flavor Release
450(4)
9.3.3 Release of Volatile Compounds (Aroma)
454(8)
9.3.3.1 Flavor Release from Homogeneous Liquids
454(4)
9.3.3.2 Influence of Ingredient Interactions
458(1)
9.3.3.3 Flavor Release from Emulsions
459(3)
9.4 Emulsion Mouthfeel and Oral Processing
462(2)
9.4.1 Colloidal Aspects
462(1)
9.4.2 Rheological Aspects
463(1)
9.4.3 Lubrication Aspects
463(1)
9.4.4 Coating Aspects
463(1)
9.4.5 Thermal Aspects
464(1)
9.5 Measurement of Emulsion Flavor
464(9)
9.5.1 Analysis of Volatile Flavor Compounds
464(2)
9.5.2 Analysis of Nonvolatile Flavor Compounds
466(1)
9.5.3 Analysis of Oral Processing
467(3)
9.5.3.1 Large-Deformation Rheology
468(1)
9.5.3.2 Small-Deformation Rheology
468(1)
9.5.3.3 Tribology
468(1)
9.5.3.4 Extensional/Elongational Flow Rheology
469(1)
9.5.3.5 Miscellaneous Tests
469(1)
9.5.4 Sensory Analysis
470(3)
9.6 Overview of the Factors Influencing Emulsion Flavor
473(6)
9.6.1 Disperse-Phase Volume Fraction
473(2)
9.6.2 Droplet Size
475(2)
9.6.3 Interfacial Characteristics
477(1)
9.6.4 Oil Phase Characteristics
478(1)
9.6.5 Aqueous Phase Characteristics
478(1)
9.7 Concluding Remarks and Future Directions
479(1)
References
480(9)
10 Appearance 489(34)
10.1 Introduction
489(1)
10.2 General Aspects of Optical Properties of Materials
490(6)
10.2.1 Interaction of Light with Matter
490(5)
10.2.2 Human Vision
495(1)
10.2.3 Quantitative Description of Appearance
495(1)
10.3 Mathematical Modeling of Emulsion Color
496(14)
10.3.1 Calculation of Scattering Characteristics of Emulsion Droplets
498(2)
10.3.2 Calculation of Spectral Transmittance or Reflectance of Emulsions
500(3)
10.3.3 Relationship of Tristimulus Coordinates to Spectral Reflectance and Transmittance
503(1)
10.3.4 Influence of Polydispersity
504(1)
10.3.5 Numerical Calculations of Emulsion Color
505(4)
10.3.6 Influence of Measurement Cell
509(1)
10.4 Measurement of Emulsion Color
510(4)
10.4.1 Spectrophotometric Colorimeters
511(2)
10.4.2 Trichromatic Colorimeters
513(1)
10.4.3 Light Scattering
514(1)
10.4.4 Sensory Analysis
514(1)
10.5 Major Factors Influencing Emulsion Color
514(6)
10.5.1 Droplet Concentration and Size
514(3)
10.5.2 Relative Refractive Index of Droplets
517(2)
10.5.3 Colorant Type and Concentration
519(1)
10.5.4 Factors Affecting Color of Real Food Emulsions
520(1)
10.6 Concluding Remarks and Future Directions
520(1)
References
521(2)
11 Gastrointestinal Fate of Emulsions 523(24)
11.1 Introduction
523(1)
11.2 Overview of Emulsion Passage through the GIT
523(6)
11.2.1 Mouth
523(1)
11.2.2 Stomach
524(2)
11.2.3 Small Intestine
526(1)
11.2.4 Colon
527(1)
11.2.5 Hormonal and Neurological Responses
528(1)
11.3 Potential Changes in Emulsion Characteristics
529(3)
11.3.1 Droplet Composition
529(1)
11.3.2 Particle Size
530(1)
11.3.3 Interfacial Properties
531(1)
11.3.4 Physical State
531(1)
11.4 Reasons for Controlling Gastrointestinal Fate of Emulsions
532(2)
11.4.1 Development of Reduced Calorie Products
532(1)
11.4.2 Control of Hormonal Responses
532(1)
11.4.3 Delivery of Bioactive Components
533(1)
11.5 Characterization of Gastrointestinal Fate of Emulsions
534(6)
11.5.1 In Vitro Approaches
534(3)
11.5.1.1 Passage through GIT
535(1)
11.5.1.2 Absorption
536(1)
11.5.2 In Vivo Approaches
537(1)
11.5.3 In Vitro versus In Vivo Correlations
537(1)
11.5.4 Measurement of Changes in Emulsion Properties
538(2)
11.6 Conclusions and Future Directions
540(1)
References
540(7)
12 Food Emulsions in Practice 547(30)
12.1 Introduction
547(1)
12.2 Milk and Cream
547(10)
12.2.1 Composition
547(3)
12.2.1.1 Dispersed Phase
547(1)
12.2.1.2 Interfacial Layer
548(2)
12.2.1.3 Continuous Phase
550(1)
12.2.2 Microstructure
550(1)
12.2.3 Production
550(1)
12.2.4 Physicochemical Properties
551(2)
12.2.4.1 Stability
551(1)
12.2.4.2 Rheology
552(1)
12.2.4.3 Appearance
553(1)
12.2.4.4 Flavor
553(1)
12.2.5 Dairy Products
553(4)
12.2.5.1 Whipped Cream
553(1)
12.2.5.2 Butter
554(1)
12.2.5.3 Ice Cream
554(2)
12.2.5.4 Yogurt
556(1)
12.2.5.5 Cheese
556(1)
12.3 Beverage Emulsions
557(7)
12.3.1 Composition
557(3)
12.3.1.1 Dispersed Phase
557(1)
12.3.1.2 Interfacial Layer
558(2)
12.3.1.3 Continuous Phase
560(1)
12.3.2 Microstructure
560(1)
12.3.3 Production
561(1)
12.3.3.1 Beverage Emulsion Concentrate
561(1)
12.3.3.2 Finished Product
561(1)
12.3.4 Physicochemical Properties
561(3)
12.3.4.1 Stability
561(2)
12.3.4.2 Texture
563(1)
12.3.4.3 Flavor
563(1)
12.3.4.4 Appearance
563(1)
12.4 Dressings
564(8)
12.4.1 Composition
565(2)
12.4.1.1 Dispersed Phase
565(1)
12.4.1.2 Continuous Phase
566(1)
12.4.1.3 Interfacial Layer
567(1)
12.4.2 Microstructure
567(1)
12.4.3 Production
568(1)
12.4.4 Physicochemical Properties
569(8)
12.4.4.1 Stability
569(2)
12.4.4.2 Rheology
571(1)
12.4.4.3 Appearance
572(1)
12.4.4.4 Flavor
572(1)
References
572(5)
13 Emulsion-Based Delivery Systems 577(46)
13.1 Introduction
577(5)
13.1.1 Active Ingredients and Their Need for Encapsulation
577(1)
13.1.2 Challenges to Incorporating Active Ingredients in Foods
578(2)
13.1.3 Desirable Characteristics of Delivery Systems
580(2)
13.1.4 Delivery System Design
582(1)
13.2 Emulsions and Nanoemulsions
582(5)
13.2.1 Composition and Structure
582(1)
13.2.2 Formation
583(2)
13.2.3 Properties
585(1)
13.2.4 Applications
586(1)
13.3 Multiple Emulsions
587(5)
13.3.1 Composition and Structure
587(1)
13.3.2 Formation
588(1)
13.3.3 Properties
588(3)
13.3.4 Applications
591(1)
13.4 Multilayer Emulsions
592(6)
13.4.1 Composition and Structure
592(1)
13.4.2 Formation
592(3)
13.4.3 Properties
595(1)
13.4.4 Applications
596(2)
13.5 Solid Lipid Particles
598(4)
13.5.1 Composition and Structure
598(1)
13.5.2 Formation
598(2)
13.5.3 Properties
600(2)
13.5.4 Applications
602(1)
13.6 Filled Hydrogel Particles
602(5)
13.6.1 Composition and Structure
602(1)
13.6.2 Formation
602(2)
13.6.3 Properties
604(2)
13.6.4 Applications
606(1)
13.7 Microclusters
607(3)
13.7.1 Composition and Structure
607(1)
13.7.2 Formation
607(1)
13.7.3 Properties
608(1)
13.7.4 Applications
609(1)
13.8 Miscellaneous Systems
610(1)
13.8.1 Particle-Stabilized Emulsions
610(1)
13.8.2 Emulsified Microemulsions and Cubosomes
610(1)
13.8.3 Nanocrystal Suspensions
611(1)
13.9 Summary
611(1)
References
611(12)
14 Characterization of Emulsion Properties 623(54)
14.1 Introduction
623(1)
14.2 Testing Emulsifier Effectiveness
623(4)
14.2.1 Emulsifying Capacity
624(1)
14.2.2 Emulsion Stability Index
625(2)
14.3 Microstructure and Droplet Size Distribution
627(28)
14.3.1 Microscopy
627(9)
14.3.1.1 Optical Microscopy
627(3)
14.3.1.2 Laser Scanning Confocal Microscopy
630(1)
14.3.1.3 Electron Microscopy
630(4)
14.3.1.4 Atomic Force Microscopy
634(2)
14.3.2 Static Light Scattering
636(6)
14.3.2.1 Principles
636(2)
14.3.2.2 Measurement Techniques
638(2)
14.3.2.3 Applications
640(2)
14.3.3 Dynamic Light Scattering and Diffusing Wave Spectroscopy
642(5)
14.3.3.1 Principles
642(1)
14.3.3.2 Measurement Techniques
642(4)
14.3.3.3 Applications
646(1)
14.3.4 Electrical Pulse Counting
647(1)
14.3.5 Sedimentation Techniques
648(1)
14.3.5.1 Principles
648(1)
14.3.5.2 Measurement Techniques
648(1)
14.3.5.3 Applications
649(1)
14.3.6 Ultrasonic Spectrometry
649(3)
14.3.6.1 Principles
649(2)
14.3.6.2 Measurement Techniques
651(1)
14.3.6.3 Applications
652(1)
14.3.7 Nuclear Magnetic Resonance
652(1)
14.3.8 Neutron Scattering
653(1)
14.3.9 Alternative Methods
654(1)
14.4 Disperse Phase Volume Fraction
655(3)
14.4.1 Proximate Analysis
655(1)
14.4.2 Density Measurements
655(2)
14.4.2.1 Principles
655(1)
14.4.2.2 Measurement Techniques
656(1)
14.4.2.3 Applications
657(1)
14.4.3 Electrical Conductivity
657(1)
14.4.3.1 Principles
657(1)
14.4.3.2 Measurement Techniques
657(1)
14.4.3.3 Applications
658(1)
14.4.4 Alternative Methods
658(1)
14.5 Droplet Crystallinity
658(8)
14.5.1 Dilatometry
658(1)
14.5.1.1 Principles
658(1)
14.5.1.2 Measurement Techniques
659(1)
14.5.1.3 Applications
659(1)
14.5.2 Nuclear Magnetic Resonance
659(3)
14.5.2.1 Principles
659(2)
14.5.2.2 Measurement Techniques
661(1)
14.5.2.3 Applications
662(1)
14.5.3 Thermal Analysis
662(3)
14.5.3.1 Principles
662(1)
14.5.3.2 Measurement Techniques
663(1)
14.5.3.3 Applications
664(1)
14.5.4 Ultrasonics
665(1)
14.5.4.1 Principles
665(1)
14.5.4.2 Measurement Techniques
665(1)
14.5.4.3 Applications
666(1)
14.6 Droplet Charge
666(4)
14.6.1 Particle Electrophoresis
666(2)
14.6.2 Electro-Acoustics
668(2)
14.7 Droplet Interactions
670(1)
14.8 Summary
671(1)
References
672(5)
Index 677
David Julian McClements is a professor in the Department of Food Science at the University of Massachusetts. He specializes in the areas of food biopolymers and colloids, particularly the development of food-based structured delivery systems for bioactive components. Dr. McClements received his Ph.D. in Food Science (1989) from the University of Leeds. He then did post-doctoral research at the University of Leeds, University of California, Davis, and University College Cork. His research has been funded by grants from the U. S. Department of Agriculture, National Aeronautics and Space Administration (NASA), National Science Foundation, U.S. Department of Commerce, and the food industry. He is a member of the editorial boards of a number of journals, and has organized workshops, symposia, and conferences in the fields of food colloids, food emulsions, and delivery systems.