Muutke küpsiste eelistusi

Forecasting with Exponential Smoothing: The State Space Approach 2008 ed. [Pehme köide]

  • Formaat: Paperback / softback, 362 pages, kõrgus x laius: 235x155 mm, kaal: 581 g, XIII, 362 p., 1 Paperback / softback
  • Sari: Springer Series in Statistics
  • Ilmumisaeg: 04-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540719164
  • ISBN-13: 9783540719168
Teised raamatud teemal:
  • Pehme köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 362 pages, kõrgus x laius: 235x155 mm, kaal: 581 g, XIII, 362 p., 1 Paperback / softback
  • Sari: Springer Series in Statistics
  • Ilmumisaeg: 04-Jul-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540719164
  • ISBN-13: 9783540719168
Teised raamatud teemal:
Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.

Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modelling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until relatively recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. In short, the book gives an overview of current topics and develops new ideas that have not appeared in the academic literature.
Part I Introduction
Basic Concepts
3(6)
Time Series Patterns
3(1)
Forecasting Methods and Models
4(1)
History of Exponential Smoothing
5(1)
State Space Models
6(3)
Getting Started
9(24)
Time Series Decomposition
9(2)
Classification of Exponential Smoothing Methods
11(1)
Point Forecasts for the Best-Known Methods
12(5)
Point Forecasts for All Methods
17(1)
State Space Models
17(6)
Initialization and Estimation
23(2)
Assessing Forecast Accuracy
25(2)
Model Selection
27(1)
Exercises
28(5)
Part II Essentials
Linear Innovations State Space Models
33(20)
The General Linear Innovations State Space Model
33(2)
Innovations and One-Step-Ahead Forecasts
35(1)
Model Properties
36(2)
Basic Special Cases
38(9)
Variations on the Common Models
47(4)
Exercises
51(2)
Nonlinear and Heteroscedastic Innovations State Space Models
53(14)
Innovations Form of the General State Space Model
53(3)
Basic Special Cases
56(5)
Nonlinear Seasonal Models
61(3)
Variations on the Common Models
64(2)
Exercises
66(1)
Estimation of Innovations State Space Models
67(8)
Maximum Likelihood Estimation
67(4)
A Heuristic Approach to Estimation
71(2)
Exercises
73(2)
Prediction Distributions and Intervals
75(30)
Simulated Prediction Distributions and Intervals
77(3)
Linear Homoscedastic State Space Models
80(3)
Linear Heteroscedastic State Space Models
83(1)
Some Nonlinear Seasonal State Space Models
83(5)
Prediction Intervals
88(2)
Lead-Time Demand Forecasts for Linear Homoscedastic Models
90(4)
Exercises
94(11)
Appendix: Derivations
95(10)
Selection of Models
105(18)
Information Criteria for Model Selection
105(3)
Choosing a Model Selection Procedure
108(8)
Implications for Model Selection Procedures
116(1)
Exercises
117(6)
Appendix: Model Selection Algorithms
118(5)
Part III Further Topics
Normalizing Seasonal Components
123(14)
Normalizing Additive Seasonal Components
124(4)
Normalizing Multiplicative Seasonal Components
128(3)
Application: Canadian Gas Production
131(3)
Exercises
134(3)
Appendix: Derivations for Additive Seasonality
135(2)
Models with Regressor Variables
137(12)
The Linear Innovations Model with Regressors
138(1)
Some Examples
139(4)
Diagnostics for Regression Models
143(4)
Exercises
147(2)
Some Properties of Linear Models
149(14)
Minimal Dimensionality for Linear Models
149(3)
Stability and the Parameter Space
152(9)
Conclusions
161(1)
Exercises
161(2)
Reduced Forms and Relationships with ARIMA Models
163(16)
ARIMA Models
164(4)
Reduced Forms for Two Simple Cases
168(2)
Reduced Form for the General Linear Innovations Model
170(1)
Stationarity and Invertibility
171(2)
ARIMA Models in Innovations State Space Form
173(3)
Cyclical Models
176(1)
Exercises
176(3)
Linear Innovations State Space Models with Random Seed States
179(30)
Innovations State Space Models with a Random Seed Vector
180(2)
Estimation
182(3)
Information Filter
185(8)
Prediction
193(1)
Model Selection
194(1)
Smoothing Time Series
195(2)
Kalman Filter
197(3)
Exercises
200(9)
Appendix: Triangularization of Stochastic Equations
203(6)
Conventional State Space Models
209(20)
State Space Models
210(2)
Estimation
212(3)
Reduced Forms
215(4)
Comparison of State Space Models
219(4)
Smoothing and Filtering
223(3)
Exercises
226(3)
Appendix: Maximizing the Size of the Parameter Space
227(2)
Time Series with Multiple Seasonal Patterns
229(26)
Exponential Smoothing for Seasonal Data
231(3)
Multiple Seasonal Processes
234(6)
An Application to Utility Data
240(6)
Analysis of Traffic Data
246(4)
Exercises
250(5)
Appendix: Alternative Forms
251(4)
Nonlinear Models for Positive Data
255(22)
Problems with the Gaussian Model
256(4)
Multiplicative Error Models
260(3)
Distributional Results
263(3)
Implications for Statistical Inference
266(4)
Empirical Comparisons
270(4)
An Appraisal
274(1)
Exercises
275(2)
Models for Count Data
277(10)
Models for Nonstationary Count Time Series
278(3)
Croston's Method
281(2)
Empirical Study: Car Parts
283(3)
Exercises
286(1)
Vector Exponential Smoothing
287(16)
The Vector Exponential Smoothing Framework
288(2)
Local Trend Models
290(1)
Estimation
290(3)
Other Multivariate Models
293(3)
Application:Exchange Rates
296(3)
Forecasting Experiment
299(1)
Exercises
299(4)
Part IV Applications
Inventory Control Applications
303(14)
Forecasting Demand Using Sales Data
304(4)
Inventory Systems
308(7)
Exercises
315(2)
Conditional Heteroscedasticity and Applications in Finance
317(8)
The Black-Scholes Model
318(1)
Autoregressive Conditional Heteroscedastic Models
319(3)
Forecasting
322(2)
Exercises
324(1)
Economic Applications: The Beveridge-Nelson Decomposition
325(14)
The Beveridge-Nelson Decomposition
328(2)
State Space Form and Applications
330(4)
Extensions of the Beveridge-Nelson Decomposition to Nonlinear Processes
334(2)
Conclusion
336(1)
Exercises
336(3)
References 339(10)
Author Index 349(4)
Data Index 353(2)
Subject Index 355