|
Part I Symmetric Spaces. The Spaces Lp, L1 ∩ L∞, L1 + L∞ |
|
|
|
1 Definition of Symmetric Spaces |
|
|
5 | (12) |
|
1.1 Distribution Functions, Equimeasurable Functions |
|
|
5 | (4) |
|
1.2 Generalized Inverse Functions |
|
|
9 | (2) |
|
1.3 Decreasing Rearrangements |
|
|
11 | (1) |
|
1.4 Integrals of Equimeasurable Functions |
|
|
12 | (1) |
|
1.5 Definition of Symmetric Spaces |
|
|
13 | (1) |
|
1.6 Example. Lp, 1 ≤ p ≤ ∞ |
|
|
14 | (3) |
|
|
17 | (12) |
|
2.1 Holder's and Minkowski's Inequalities |
|
|
17 | (4) |
|
|
21 | (2) |
|
2.3 Separability of Lp, 1 ≤ p < ∞ |
|
|
23 | (1) |
|
|
24 | (5) |
|
|
29 | (12) |
|
3.1 The Intersection of the Spaces L1 and L∞ |
|
|
29 | (1) |
|
|
30 | (3) |
|
3.3 Approximation by Step Functions |
|
|
33 | (2) |
|
3.4 Measure-Preserving Transformations |
|
|
35 | (3) |
|
3.5 Approximation by Simple Integrable Functions |
|
|
38 | (3) |
|
|
41 | (18) |
|
4.1 The Maximal Property of Decreasing Rearrangements |
|
|
41 | (4) |
|
|
45 | (4) |
|
4.3 Embeddings L1 ⊂ L1 + L∞ and L∞ ⊂ L1 + L∞. The Space R0 |
|
|
49 | (10) |
|
|
51 | (4) |
|
|
55 | (4) |
|
Part II Symmetric Spaces. The Embedding Theorem. Properties (A), (B), (C) |
|
|
|
5 Embeddings L1 ∩ L∞ ⊂ X ⊂ L1 + L∞ ⊂ L0 |
|
|
59 | (12) |
|
5.1 Fundamental Functions |
|
|
59 | (2) |
|
5.2 The Embedding Theorem L1 ∩ L∞ ⊂ X ⊂ L1 + L∞ |
|
|
61 | (5) |
|
5.3 The Space L0 and the Embedding L1 + L∞ ⊂ L0 |
|
|
66 | (5) |
|
6 Embeddings. Minimality and Separability. Property (A) |
|
|
71 | (12) |
|
6.1 Embedded Symmetric Spaces |
|
|
71 | (2) |
|
6.2 The Intersection and the Sum of Two Symmetric Spaces |
|
|
73 | (2) |
|
6.3 Minimal Symmetric Spaces |
|
|
75 | (1) |
|
6.4 Minimality and Separability |
|
|
76 | (3) |
|
6.5 Separability and Property (A) |
|
|
79 | (4) |
|
|
83 | (12) |
|
7.1 Dual and Associate Spaces |
|
|
83 | (2) |
|
7.2 The Maximal Property of Products f*g* |
|
|
85 | (5) |
|
7.3 Examples of Associate Spaces |
|
|
90 | (2) |
|
7.4 Comparison of X1 and X* |
|
|
92 | (3) |
|
8 Maximality. Properties (B) and (C) |
|
|
95 | (20) |
|
8.1 The Second Associate Space |
|
|
95 | (2) |
|
8.2 Maximality and Property (B) |
|
|
97 | (1) |
|
8.3 Embedding X ⊂ X11 and Property (C) |
|
|
98 | (5) |
|
8.4 Property (AB). Reflexivity |
|
|
103 | (12) |
|
|
106 | (3) |
|
|
109 | (6) |
|
Part III Lorentz and Marcinkiewicz Spaces |
|
|
|
|
115 | (12) |
|
9.1 Definition of Lorentz Spaces |
|
|
115 | (4) |
|
9.2 Maximality. Fundamental Functions of Lorentz Spaces |
|
|
119 | (1) |
|
9.3 Minimal and Separable Lorentz Spaces |
|
|
120 | (4) |
|
9.4 Four Types of Lorentz Spaces |
|
|
124 | (3) |
|
10 Quasiconcave Functions |
|
|
127 | (12) |
|
10.1 Fundamental Functions and Quasiconcave Functions |
|
|
127 | (1) |
|
10.2 Examples of Quasiconcave Functions |
|
|
128 | (2) |
|
10.3 The Least Concave Majorant |
|
|
130 | (5) |
|
10.4 Quasiconcavity of Fundamental Functions |
|
|
135 | (1) |
|
10.5 Quasiconvex Functions |
|
|
136 | (3) |
|
|
139 | (12) |
|
11.1 The Maximal Function f** |
|
|
139 | (4) |
|
11.2 Definition of Marcinkiewicz Spaces |
|
|
143 | (1) |
|
11.3 Duality of Lorentz and Marcinkiewicz Spaces |
|
|
144 | (3) |
|
11.4 Examples of Marcinkiewicz Spaces |
|
|
147 | (4) |
|
12 Embedding Λ0~V ⊂ X ⊂ Mv* |
|
|
151 | (20) |
|
12.1 The Embedding Theorem |
|
|
151 | (5) |
|
12.2 The Renorming Theorem |
|
|
156 | (1) |
|
12.3 Examples of Lorentz and Marcinkiewicz Spaces |
|
|
157 | (5) |
|
12.4 Comparison of Lorentz and Marcinkiewicz Spaces |
|
|
162 | (9) |
|
|
163 | (3) |
|
|
166 | (5) |
|
|
|
13 Definition and Examples of Orlicz Spaces |
|
|
171 | (12) |
|
|
171 | (2) |
|
|
173 | (4) |
|
13.3 Fundamental Functions of Orlicz Spaces |
|
|
177 | (1) |
|
13.4 Examples of Orlicz Spaces |
|
|
178 | (5) |
|
14 Separable Orlicz Spaces |
|
|
183 | (12) |
|
14.1 Young Classes YΦ and Subspaces HΦ |
|
|
183 | (2) |
|
14.2 Separability Conditions for Orlicz Spaces |
|
|
185 | (5) |
|
|
190 | (2) |
|
14.4 Examples of Orlicz Spaces with and Without the (Δ2) Condition |
|
|
192 | (3) |
|
15 Duality for Orlicz Spaces |
|
|
195 | (12) |
|
15.1 The Legendre Transform |
|
|
195 | (2) |
|
15.2 The Geometric Interpretation |
|
|
197 | (3) |
|
15.3 Duality for Orlicz Spaces |
|
|
200 | (5) |
|
15.4 Duality and the (Δ2) Condition. Reflexivity |
|
|
205 | (2) |
|
16 Comparison of Orlicz Spaces |
|
|
207 | (10) |
|
16.1 Comparison of Orlicz Spaces |
|
|
207 | (2) |
|
16.2 The Embedding Theorem for Orlicz Spaces |
|
|
209 | (3) |
|
16.3 The Coincidence Theorem for Orlicz Spaces |
|
|
212 | (1) |
|
|
213 | (4) |
|
17 Intersections and Sums of Orlicz Spaces |
|
|
217 | (20) |
|
17.1 The Intersection and the Sum of Orlicz Spaces |
|
|
217 | (3) |
|
17.2 The Spaces LΦ + L∞ and LΨ ∩ L1 |
|
|
220 | (3) |
|
17.3 The Spaces LΦ + L1 and LΨ ∩ L∞ |
|
|
223 | (1) |
|
17.4 The Spaces Lp ∩ Lq and Lp + Lq, 1 ≤ p ≤ q ≤ ∞ |
|
|
224 | (13) |
|
|
229 | (5) |
|
|
234 | (3) |
|
|
237 | (14) |
|
1 Symmetric Spaces on General Measure Spaces |
|
|
237 | (2) |
|
2 Symmetric Spaces on [ 0, 1] |
|
|
239 | (2) |
|
3 Symmetric Sequence Spaces |
|
|
241 | (2) |
|
4 The Spaces Lp, 0 < p < 1 |
|
|
243 | (2) |
|
5 Weak Sequential Completeness. Property (AB) |
|
|
245 | (1) |
|
6 The Least Concave Majorant |
|
|
246 | (1) |
|
7 The Minimal Part M0v of the Marcinkiewicz Space Mv |
|
|
247 | (1) |
|
8 Lorentz Spaces Lp,q and Orlicz--Lorentz Spaces |
|
|
248 | (3) |
References |
|
251 | (4) |
Index |
|
255 | |