Muutke küpsiste eelistusi

Fractional Modeling and Controller Design of Robotic Manipulators: With Hardware Validation 2021 ed. [Kõva köide]

  • Formaat: Hardback, 138 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 74 Illustrations, color; 51 Illustrations, black and white; XV, 138 p. 125 illus., 74 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 194
  • Ilmumisaeg: 16-Oct-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030582469
  • ISBN-13: 9783030582463
  • Kõva köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 138 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 74 Illustrations, color; 51 Illustrations, black and white; XV, 138 p. 125 illus., 74 illus. in color., 1 Hardback
  • Sari: Intelligent Systems Reference Library 194
  • Ilmumisaeg: 16-Oct-2020
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030582469
  • ISBN-13: 9783030582463

This book at hand is an appropriate addition to the field of fractional calculus applied to control systems. If an engineer or a researcher wishes to delve into fractional-order systems, then this book has many collections of such systems to work upon, and this book also tells the reader about how one can convert an integer-order system into an appropriate fractional-order one through an efficient and simple algorithm. If the reader further wants to explore the controller design for the fractional-order systems, then for them, this book provides a variety of controller design strategies. The use of fractional-order derivatives and integrals in control theory leads to better results than integer-order approaches and hence provides solid motivation for further development of control theory. Fractional-order models are more useful than the integer-order models when accuracy is of paramount importance. Real-time experimental validation of controller design strategies for the fractional-order plants is available. This book is beneficial to the academic institutes for postgraduate and advanced research-level that need a specific textbook on fractional control and its applications in srobotic manipulators. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.


1 Introduction
1(18)
1.1 Applications of Fractional Calculus
2(6)
1.2 Studies on Robotic Manipulators
8(2)
1.2.1 Supported by Simulations
9(1)
1.2.2 Supported by Experiments
10(1)
1.3 Objectives and Scope
10(3)
References
13(6)
2 Fractional Modeling of Robotic Systems
19(26)
2.1 Mathematical Modeling
20(15)
2.1.1 Mass-Spring-Damper (MSD) System
20(1)
2.1.2 Inverted Pendulum on a Cart System (POAC)
21(5)
2.1.3 Double Inverted Pendulum on a Cart System (DI-POAC)
26(2)
2.1.4 2D-Gantry Crane System
28(2)
2.1.5 Missile Launching Vehicle/Pad (MLV)
30(5)
2.2 Fractional Modeling of a System
35(7)
2.2.1 Embedding to Inverted Pendulum and Cart (POAC)
37(1)
2.2.2 Embedding to 2D-Gantry Crane System
38(2)
2.2.3 Embedding to Missile Launching Vehicle (MLV)
40(2)
References
42(3)
3 FOPID Controller Design for IO Model of Robotic Systems
45(18)
3.1 Controller Design for Mass-Spring System
46(2)
3.2 PID and Fractional PID Controller Design
48(8)
3.2.1 For POAC System
49(5)
3.2.2 For 2D Gantry Crane System
54(2)
3.3 Model Predictive Controller (MPC)
56(4)
References
60(3)
4 Fractional Model Predictive and Adaptive Fractional Model Predictive Controller Design
63(20)
4.1 Fractional Model Predictive Controller (FMPC) Design for POAC System
64(4)
4.1.1 Case 1: With Changing Cart Mass
67(1)
4.1.2 Case 2: With Changing Pendulum Mass
68(1)
4.2 Design of FMPC for 2-D Gantry Crane System
68(6)
4.3 FMPC for Missile Launching Pad
74(3)
4.4 Adaptive Fractional Model Predictive Control (AFMPC)
77(4)
4.4.1 For POAC System
79(1)
4.4.2 For 2D Gantry Crane System
80(1)
References
81(2)
5 Modeling, Stability and Fractional Control of Single Flexible Link Robotic Manipulator
83(16)
5.1 Fractional Order Model of SFLRM and Its Validation
85(4)
5.2 Stability Analysis and Control Law Design
89(4)
5.3 Experimental Validation
93(3)
References
96(3)
6 Improved Fractional Model Selection and Control with Experimental Validation
99(22)
6.1 Algorithm for Selection of a Fractional Model
101(2)
6.2 Evaluation of the Algorithm
103(4)
6.3 Simulation Results Analysis with Existing Fractional Models
107(2)
6.4 Experimental Results Analysis on Robotic Manipulators
109(9)
6.4.1 Fractional Controller Design for Integer Order Models
112(3)
6.4.2 Integer Controller for Fractional Order Models
115(1)
6.4.3 Fractional Controller Design for Fractional Order Model
116(2)
References
118(3)
7 Model Reference Adaptive Fractional Order Controller Design
121(16)
7.1 Introduction
121(2)
7.2 Adaptive FO Controller Design for Pendulum on a Cart System
123(3)
7.3 Adaptive FO Controller Design for 2D Gantry Crane System
126(2)
7.4 Adaptive FO Controller Design for Single Rigid Link Robotic Manipulator
128(2)
7.5 Adaptive FO Controller Design for 2DOF Serial Link Robotic Manipulator
130(1)
7.6 Adaptive FO Controller Design for Missile Launching System (MLV)
131(2)
References
133(4)
Appendix A 137