Muutke küpsiste eelistusi

Friction Stir Welding and Processing: Science and Engineering 2014 ed. [Kõva köide]

  • Formaat: Hardback, 338 pages, kõrgus x laius: 235x155 mm, kaal: 7143 g, 112 Illustrations, color; 162 Illustrations, black and white; XII, 338 p. 274 illus., 112 illus. in color., 1 Hardback
  • Ilmumisaeg: 19-Aug-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319070428
  • ISBN-13: 9783319070421
Teised raamatud teemal:
  • Kõva köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 338 pages, kõrgus x laius: 235x155 mm, kaal: 7143 g, 112 Illustrations, color; 162 Illustrations, black and white; XII, 338 p. 274 illus., 112 illus. in color., 1 Hardback
  • Ilmumisaeg: 19-Aug-2014
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319070428
  • ISBN-13: 9783319070421
Teised raamatud teemal:
This book lays out the fundamentals of friction stir welding and processing and builds toward practical perspectives. The authors describe the links between the thermo-mechanical aspects and the microstructural evolution and use of these for the development of the friction stir process as a broader metallurgical tool for microstructural modification and manufacturing. The fundamentals behind the practical aspects of tool design, process parameter selection and weld related defects are discussed. Local microstructural refinement has enabled new concepts of superplastic forming and enhanced low temperature forming. The collection of friction stir based technologies is a versatile set of solid state manufacturing tools.
1 Introduction
1(12)
1.1 Solid State Welding
3(1)
1.2 Friction Stir Welding
3(2)
1.3 Taxonomy for Friction Stir Welding and Processing
5(2)
1.4 Overall Applicability of Friction Stir Welding
7(1)
1.5 A Few Illustrative Implementation Examples
8(5)
References
11(2)
2 Fundamentals of the Friction Stir Process
13(46)
2.1 Overview of Macroscopic Processes During FSW
13(3)
2.2 Heat Generation During Friction Stir Process
16(13)
2.2.1 Heat Generation from Frictional Heating
18(6)
2.2.2 Heat Generation from Plastic Deformation
24(1)
2.2.3 Heat Transfer During Friction Stir Process
25(4)
2.3 Experimental Studies on Heat and Material Flow
29(7)
2.4 Material Flow Basics
36(14)
2.4.1 Flow Zones Around the Tool Pin
40(1)
2.4.2 Strain and Strain Rate During FSW
41(5)
2.4.3 Forces During FSW
46(4)
2.5 Material Behavior and Constitutive Equations
50(3)
2.5.1 Determination of Constitutive Equations at High Strain Rates
52(1)
2.6 Forces Around the Pin and Shoulder
53(6)
References
55(4)
3 Fundamental Physical Metallurgy Background for FSW/P
59(36)
3.1 Introduction
59(2)
3.2 Phase Transformation Basics
61(10)
3.2.1 Thermodynamics of Phase Formation
61(2)
3.2.2 Phase Nucleation Kinetics
63(3)
3.2.3 Phase Growth Kinetics
66(4)
3.2.4 Overall Transformation Kinetics
70(1)
3.3 Recovery, Recrystallization and Grain Growth
71(8)
3.3.1 Static Recovery
73(2)
3.3.2 Static Recrystallization
75(1)
3.3.3 Dynamic Recovery
76(1)
3.3.4 Dynamic Recrystallization
77(1)
3.3.5 Grain Growth
78(1)
3.4 Precipitation Transformations
79(4)
3.5 Eutectoid Transformations
83(2)
3.6 Widmanstatten Structures (Adapted from Porter and Easterling (2004))
85(1)
3.7 Martensitic Transformation
86(2)
3.8 Physical Simulation of FSW
88(1)
3.9 Microstructural Evolution During Friction Stir Welding
89(6)
References
93(2)
4 Friction Stir Welding Configurations and Tool Selection
95(14)
4.1 Joint Configuration
95(4)
4.2 Tool Material Selection
99(2)
4.3 Tool Features
101(6)
4.4 A Conceptual Process Map with Microstructural Domains
107(2)
Additional Reading
107(1)
References
108(1)
5 FSW of Aluminum Alloys
109(40)
5.1 Al Alloys: Background
109(3)
5.2 Friction Stir Process of Aluminum Alloys
112(2)
5.2.1 Friction Stir Welding Tool Design
112(2)
5.2.2 FSW Operational Parameters
114(1)
5.3 Microstructure Evolution During FSW
114(7)
5.3.1 2XXX Alloys
114(2)
5.3.2 5XXX Alloys
116(1)
5.3.3 6XXX Alloys
117(2)
5.3.4 Cast Al-Si Mg Alloys
119(1)
5.3.5 7XXX Alloys
120(1)
5.4 Mechanical Properties After FSW
121(18)
5.4.1 2XXX Alloys
121(5)
5.4.2 5XXX Alloys
126(3)
5.4.3 6XXX Alloys
129(3)
5.4.4 Cast Al-Si-Mg Alloy
132(1)
5.4.5 7XXX Alloys
133(6)
5.5 Microstructure and Mechanical Properties of Friction Stir Spot Welds
139(4)
5.5.1 Macro/Microstructure
139(4)
5.6 Corrosion in FSW Welds
143(6)
References
146(3)
6 Friction Stir Welding of Magnesium Alloys
149(40)
6.1 Magnesium Alloys in Twenty-First Century
149(2)
6.2 Classification of Magnesium Alloys
151(2)
6.3 Welding of Magnesium Alloy
153(36)
6.3.1 Conventional Route of Welding Mg Alloys
154(1)
6.3.2 Friction Stir Welding of Magnesium Alloys
155(7)
6.3.3 Evolution of Microstructure
162(10)
6.3.4 Properties
172(12)
References
184(5)
7 Friction Stir Welding of High Temperature Alloys
189(48)
7.1 Titanium Alloys
190(18)
7.1.1 Introduction and Basic Physical Metallurgy
190(5)
7.1.2 Tool Materials and Related Issue
195(1)
7.1.3 Mechanical Properties of Titanium Alloys
195(4)
7.1.4 Friction Stir Welding of Titanium Alloys
199(9)
7.2 Ferrous Alloy
208(29)
7.2.1 Introduction and Basic Physical Metallurgy of Steels
208(7)
7.2.2 Tool Materials and Related Issues
215(2)
7.2.3 Mechanical Properties of Steel
217(2)
7.2.4 Friction Stir Welding of Steels
219(15)
References
234(3)
8 Dissimilar Metal Friction Stir Welding
237(22)
8.1 Introduction
237(1)
8.2 Issues with Dissimilar Metal Welding
237(3)
8.3 Friction Stir Welding of Dissimilar Metals
240(19)
8.3.1 Friction Stir Welding of Different Alloys with Similar Base Metals and Melting Points
240(3)
8.3.2 Friction Stir Welding of Different Alloys Having Dissimilar Base Metals and Similar Melting Point
243(8)
8.3.3 Dissimilar Metals Having Widely Differing Melting Point
251(6)
References
257(2)
9 Friction Stir Processing
259(38)
9.1 Friction Stir Processing for Superplastic Forming
261(8)
9.1.1 Constitutive Relationship and Microstructural Requirements for Superplasticity
261(1)
9.1.2 Superplastic Flow in Friction Stir Processed Materials
262(2)
9.1.3 Friction Stir Processing as a Technology Enabler for New Concepts
264(5)
9.2 Enhanced Room Temperature Formability via FSP
269(3)
9.3 Friction Stir Processing of Surface Composites and Powder Processing: Approach for Stiffness Limiting Design
272(7)
9.3.1 Localized Surface Modification
273(1)
9.3.2 Processing of Powder Metallurgy Alloys
274(2)
9.3.3 Synergistic Design: Concept of Embedded Structures for Higher Efficiency
276(3)
9.4 Friction Stir Casting Modification: Examples of Approaches for Strength Limiting, Fatigue Limiting and Toughness Limiting Designs
279(9)
9.4.1 Microstructural Refinement
279(3)
9.4.2 Influence on Mechanical Properties
282(6)
9.5 Friction Stir Channeling (FSC)
288(3)
9.6 Ultrafine Grained Materials via Friction Stir Processing
291(6)
References
294(3)
10 Residual Stresses and Mitigation Strategies
297(30)
10.1 Introduction
297(4)
10.1.1 Definition
297(1)
10.1.2 Causes of Residual Stress
297(1)
10.1.3 Types of Residual Stresses
298(1)
10.1.4 Implications of Residual Stresses
299(2)
10.2 Residual Stresses in Welding
301(4)
10.2.1 Residual Stresses in Friction Stir Welding
302(3)
10.3 Measurement of Residual Stresses
305(5)
10.3.1 Hole Drilling
306(1)
10.3.2 X-Ray Diffraction
307(2)
10.3.3 Role of Sample Size in the Measurement of Residual Stresses
309(1)
10.4 Effect of Residual Stress on Properties
310(1)
10.5 Dependence of Residual Stresses on Friction Stir Welding Parameters
311(3)
10.6 Understanding Development of Residual Stresses in Friction Stir Welding
314(2)
10.7 Difference Between Residual Stress Generation in Friction Stir Welding and Fusion Welding
316(1)
10.8 Mitigation of Residual Stresses
317(3)
10.8.1 Active Cooling
317(1)
10.8.2 Mechanical Tensioning
318(1)
10.8.3 Roller Tensioning
319(1)
10.9 Modeling and Simulation of Residual Stresses in Friction Stir Welding
320(7)
References
325(2)
Index 327
Rajiv Mishra is a professor in the Department of Materials Science and Engineering at the University of North Texas.

Partha Sarathi De is an assistant professor at the School of Minerals, Metallurgical & Materials Engineering at the Indian Institute of Technology.

Nilesh Kumar is a post-doctoral research associate at University of North Texas.