Muutke küpsiste eelistusi

Fuglede-Putnam Theory 1st ed. 2022 [Pehme köide]

  • Formaat: Paperback / softback, 158 pages, kõrgus x laius: 235x155 mm, kaal: 267 g, 1 Illustrations, black and white; VIII, 158 p. 1 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2322
  • Ilmumisaeg: 16-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031177819
  • ISBN-13: 9783031177811
Teised raamatud teemal:
  • Pehme köide
  • Hind: 57,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 68,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 158 pages, kõrgus x laius: 235x155 mm, kaal: 267 g, 1 Illustrations, black and white; VIII, 158 p. 1 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Mathematics 2322
  • Ilmumisaeg: 16-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031177819
  • ISBN-13: 9783031177811
Teised raamatud teemal:
This book is essentially a survey of results on the Fuglede-Putnam theorem and its generalizations in a wide variety of directions. Presenting a broad overview of the results obtained in the field since the early 1950s, this is the first monograph to be dedicated to this powerful tool and its variants.

Starting from historical notes and classical versions with their different proofs, the book then explores asymptotic versions, generalizations to non-normal operators, generalizations to unbounded operators, counterexamples, applications, intertwining relations, and conjectures. A rich collection of applications is included. 

Aimed at postgraduate students as well as researchers interested in operator theory, this book could also be taught as a specialized course.

Arvustused

This monograph is informative, and it collects several interesting results from the single variable operator theory. (Sameer Chavan, zbMATH 1512.47003, 2023)

-
1. Classical Versions and Some Historical Notes. - 2. Generalizations
to Bounded Nonnormal Operators. - 3. Asymptotic Versions. -
4. Generalizations of the Fuglede-Putnam Theorem to Banach Algebras and
Spaces. - 5. Generalizations to Unbounded Operators. - 6. Some Applications.
- 7. Some Other Intertwining Relations. -
8. Conjectures.