Muutke küpsiste eelistusi

Function Theory and $\ell ^p$ Spaces [Pehme köide]

  • Formaat: Paperback / softback, 219 pages, kõrgus x laius: 254x178 mm, kaal: 430 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Jul-2020
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470455935
  • ISBN-13: 9781470455934
Teised raamatud teemal:
  • Formaat: Paperback / softback, 219 pages, kõrgus x laius: 254x178 mm, kaal: 430 g
  • Sari: University Lecture Series
  • Ilmumisaeg: 30-Jul-2020
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470455935
  • ISBN-13: 9781470455934
Teised raamatud teemal:
The classical $\ell^{p}$ sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces $\ell^{p}_{A}$ of analytic functions whose Taylor coefficients belong to $\ell^p$. Relations between the Banach space $\ell^p$ and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of $\ell^{p}_{A}$ and a discussion of the Wiener algebra $\ell^{1}_{A}$. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.
Preface ix
Overview xi
Notation xv
Chapter 1 The Basics of p
1(16)
1.1 Definition of p
1(1)
1.2 Classical Inequalities
2(3)
1.3 Completeness
5(1)
1.4 The Case 0 < p < 1
6(3)
1.5 The Embedding Operator
9(1)
1.6 Schauder Basis
10(1)
1.7 The Dual of p
10(4)
1.8 Norming Functionals
14(1)
1.9 Notes
15(2)
Chapter 2 Frames
17(12)
2.1 Frames in Hilbert Spaces
17(1)
2.2 Frames in p
18(3)
2.3 Parseval and Tight Frames
21(3)
2.4 Riesz Bases
24(3)
2.5 An Analogue of the Feichtinger Conjecture for p
27(1)
2.6 Notes
28(1)
Chapter 3 The Geometry of p
29(12)
3.1 Convexity
29(4)
3.2 Metric Projection
33(1)
3.3 Birkhoff-James Orthogonality
34(2)
3.4 Smoothness
36(4)
3.5 Notes
40(1)
Chapter 4 Weak Parallelogram Laws
41(22)
4.1 The Parallelogram Law
41(2)
4.2 Basic Properties
43(4)
4.3 Geometric Consequences of Weak Parallelogram Laws
47(1)
4.4 Duality of the Weak Parallelogram Laws
48(2)
4.5 Weak Parallelogram Laws for p
50(5)
4.6 Pythagorean Inequalities
55(4)
4.7 Lack of Weak Parallelogram Laws
59(1)
4.8 Metric Projections onto Nested Subspaces
60(1)
4.9 Notes
61(2)
Chapter 5 Hardy and Bergman Spaces
63(10)
5.1 The Hardy Space
63(5)
5.2 The Bergman Space
68(1)
5.3 The Shift Operator
69(1)
5.4 The Backward Shift Operator
70(2)
5.5 Notes
72(1)
Chapter 6 P as a Function Space
73(16)
6.1 The Space pA
73(1)
6.2 Some Inhabitants of pA
74(7)
6.3 Relationship to Hp Spaces
81(1)
6.4 Evaluation Functional and Duality
82(1)
6.5 Boundary Behavior in pA
83(1)
6.6 pA is an Algebra When 0 < p < 1
84(3)
6.7 Notes
87(2)
Chapter 7 Some Operators on pA
89(12)
7.1 The Shift Operator
89(2)
7.2 The Difference Quotient Operator
91(1)
7.3 Hadamard Multipliers
92(1)
7.4 Isometries on pA
93(2)
7.5 Composition Operators
95(4)
7.6 Notes
99(2)
Chapter 8 Extremal Functions
101(22)
8.1 Zero Sets
101(1)
8.2 Solving an Extremal Problem
102(3)
8.3 Extremal Functions as Inner Functions
105(4)
8.4 A Related Extremal Problem
109(2)
8.5 One Point Extremal Function
111(2)
8.6 Finite Point Extremal Functions
113(2)
8.7 Extra Zeros
115(5)
8.8 Bounds for Extra Zeros
120(2)
8.9 Notes
122(1)
Chapter 9 Zeros of pvA Functions
123(26)
9.1 The Blaschke Condition
123(3)
9.2 Zero Sets and p-Inner Functions
126(3)
9.3 Geometric Convergence to the Boundary
129(3)
9.4 Slower Than Geometric Convergence to the Boundary
132(2)
9.5 A Non-Blaschke Zero Set for p > 2
134(4)
9.6 Blaschke, But Not a Zero Set
138(6)
9.7 Zero Sets When 0 < p ≤ 1
144(1)
9.8 A Note About Sampling in pA
145(3)
9.9 Notes
148(1)
Chapter 10 The Shift
149(10)
10.1 Finite Co-Dimensional Invariant Subspaces
149(2)
10.2 A Quick Review of Fredholm Theory
151(1)
10.3 The Division Property
152(2)
10.4 Beurling's Theorem
154(2)
10.5 Notes
156(3)
Chapter 11 The Backward Shift
159(14)
11.1 Pseudocontinuations
159(3)
11.2 Other Types of Continuations
162(6)
11.3 Finite Dimensional Invariant Subspaces
168(1)
11.4 Gap Series Theorems
168(3)
11.5 Notes
171(2)
Chapter 12 Multipliers of pA
173(20)
12.1 Convolutions
173(1)
12.2 The Space of Multipliers
173(3)
12.3 Mp as the Commutant
176(3)
12.4 A Multiplier Norm Estimate
179(1)
12.5 Connection to Fourier Multipliers
180(2)
12.6 Boundary Properties of Multipliers
182(2)
12.7 Isometric Multipliers
184(2)
12.8 Smooth Multipliers
186(2)
12.9 1A Embeds Contractively in Mp
188(1)
12.10 Quotients of Multipliers
189(1)
12.11 Inner Multipliers
190(1)
12.12 Notes
191(2)
Chapter 13 The Wiener Algebra
193(12)
13.1 Some Inhabitants of the Wiener Algebra
193(2)
13.2 Wiener's 1/f Theorem
195(3)
13.3 Composition
198(1)
13.4 Zero Sets
199(1)
13.5 Ideals
200(3)
13.6 Notes
203(2)
Bibliography 205(8)
Author Index 213(4)
Subject Index 217
Raymond Cheng,, Old Dominion University, Norfolk, VA

Javad Mashreghi, Laval University, Quebec City, QC, Canada

William T. Ross University of Richmond, VA