Preface |
|
ix | |
Overview |
|
xi | |
Notation |
|
xv | |
|
Chapter 1 The Basics of p |
|
|
1 | (16) |
|
|
1 | (1) |
|
1.2 Classical Inequalities |
|
|
2 | (3) |
|
|
5 | (1) |
|
|
6 | (3) |
|
1.5 The Embedding Operator |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
10 | (4) |
|
|
14 | (1) |
|
|
15 | (2) |
|
|
17 | (12) |
|
2.1 Frames in Hilbert Spaces |
|
|
17 | (1) |
|
|
18 | (3) |
|
2.3 Parseval and Tight Frames |
|
|
21 | (3) |
|
|
24 | (3) |
|
2.5 An Analogue of the Feichtinger Conjecture for p |
|
|
27 | (1) |
|
|
28 | (1) |
|
Chapter 3 The Geometry of p |
|
|
29 | (12) |
|
|
29 | (4) |
|
|
33 | (1) |
|
3.3 Birkhoff-James Orthogonality |
|
|
34 | (2) |
|
|
36 | (4) |
|
|
40 | (1) |
|
Chapter 4 Weak Parallelogram Laws |
|
|
41 | (22) |
|
4.1 The Parallelogram Law |
|
|
41 | (2) |
|
|
43 | (4) |
|
4.3 Geometric Consequences of Weak Parallelogram Laws |
|
|
47 | (1) |
|
4.4 Duality of the Weak Parallelogram Laws |
|
|
48 | (2) |
|
4.5 Weak Parallelogram Laws for p |
|
|
50 | (5) |
|
4.6 Pythagorean Inequalities |
|
|
55 | (4) |
|
4.7 Lack of Weak Parallelogram Laws |
|
|
59 | (1) |
|
4.8 Metric Projections onto Nested Subspaces |
|
|
60 | (1) |
|
|
61 | (2) |
|
Chapter 5 Hardy and Bergman Spaces |
|
|
63 | (10) |
|
|
63 | (5) |
|
|
68 | (1) |
|
|
69 | (1) |
|
5.4 The Backward Shift Operator |
|
|
70 | (2) |
|
|
72 | (1) |
|
Chapter 6 P as a Function Space |
|
|
73 | (16) |
|
|
73 | (1) |
|
6.2 Some Inhabitants of pA |
|
|
74 | (7) |
|
6.3 Relationship to Hp Spaces |
|
|
81 | (1) |
|
6.4 Evaluation Functional and Duality |
|
|
82 | (1) |
|
6.5 Boundary Behavior in pA |
|
|
83 | (1) |
|
6.6 pA is an Algebra When 0 < p < 1 |
|
|
84 | (3) |
|
|
87 | (2) |
|
Chapter 7 Some Operators on pA |
|
|
89 | (12) |
|
|
89 | (2) |
|
7.2 The Difference Quotient Operator |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
7.5 Composition Operators |
|
|
95 | (4) |
|
|
99 | (2) |
|
Chapter 8 Extremal Functions |
|
|
101 | (22) |
|
|
101 | (1) |
|
8.2 Solving an Extremal Problem |
|
|
102 | (3) |
|
8.3 Extremal Functions as Inner Functions |
|
|
105 | (4) |
|
8.4 A Related Extremal Problem |
|
|
109 | (2) |
|
8.5 One Point Extremal Function |
|
|
111 | (2) |
|
8.6 Finite Point Extremal Functions |
|
|
113 | (2) |
|
|
115 | (5) |
|
8.8 Bounds for Extra Zeros |
|
|
120 | (2) |
|
|
122 | (1) |
|
Chapter 9 Zeros of pvA Functions |
|
|
123 | (26) |
|
9.1 The Blaschke Condition |
|
|
123 | (3) |
|
9.2 Zero Sets and p-Inner Functions |
|
|
126 | (3) |
|
9.3 Geometric Convergence to the Boundary |
|
|
129 | (3) |
|
9.4 Slower Than Geometric Convergence to the Boundary |
|
|
132 | (2) |
|
9.5 A Non-Blaschke Zero Set for p > 2 |
|
|
134 | (4) |
|
9.6 Blaschke, But Not a Zero Set |
|
|
138 | (6) |
|
9.7 Zero Sets When 0 < p ≤ 1 |
|
|
144 | (1) |
|
9.8 A Note About Sampling in pA |
|
|
145 | (3) |
|
|
148 | (1) |
|
|
149 | (10) |
|
10.1 Finite Co-Dimensional Invariant Subspaces |
|
|
149 | (2) |
|
10.2 A Quick Review of Fredholm Theory |
|
|
151 | (1) |
|
10.3 The Division Property |
|
|
152 | (2) |
|
|
154 | (2) |
|
|
156 | (3) |
|
Chapter 11 The Backward Shift |
|
|
159 | (14) |
|
|
159 | (3) |
|
11.2 Other Types of Continuations |
|
|
162 | (6) |
|
11.3 Finite Dimensional Invariant Subspaces |
|
|
168 | (1) |
|
|
168 | (3) |
|
|
171 | (2) |
|
Chapter 12 Multipliers of pA |
|
|
173 | (20) |
|
|
173 | (1) |
|
12.2 The Space of Multipliers |
|
|
173 | (3) |
|
|
176 | (3) |
|
12.4 A Multiplier Norm Estimate |
|
|
179 | (1) |
|
12.5 Connection to Fourier Multipliers |
|
|
180 | (2) |
|
12.6 Boundary Properties of Multipliers |
|
|
182 | (2) |
|
12.7 Isometric Multipliers |
|
|
184 | (2) |
|
|
186 | (2) |
|
12.9 1A Embeds Contractively in Mp |
|
|
188 | (1) |
|
12.10 Quotients of Multipliers |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
Chapter 13 The Wiener Algebra |
|
|
193 | (12) |
|
13.1 Some Inhabitants of the Wiener Algebra |
|
|
193 | (2) |
|
13.2 Wiener's 1/f Theorem |
|
|
195 | (3) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (3) |
|
|
203 | (2) |
Bibliography |
|
205 | (8) |
Author Index |
|
213 | (4) |
Subject Index |
|
217 | |