Muutke küpsiste eelistusi

Functional Analysis and Operator Algebras 2024 ed. [Kõva köide]

  • Formaat: Hardback, 797 pages, kõrgus x laius: 235x155 mm, 2 Illustrations, color; 1 Illustrations, black and white; XIV, 797 p. 3 illus., 2 illus. in color., 1 Hardback
  • Sari: CMS/CAIMS Books in Mathematics 13
  • Ilmumisaeg: 10-Apr-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031636643
  • ISBN-13: 9783031636646
Teised raamatud teemal:
  • Kõva köide
  • Hind: 150,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 177,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 797 pages, kõrgus x laius: 235x155 mm, 2 Illustrations, color; 1 Illustrations, black and white; XIV, 797 p. 3 illus., 2 illus. in color., 1 Hardback
  • Sari: CMS/CAIMS Books in Mathematics 13
  • Ilmumisaeg: 10-Apr-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031636643
  • ISBN-13: 9783031636646
Teised raamatud teemal:
This book offers a comprehensive introduction to various aspects of functional analysis and operator algebras.





In Part I, readers will find the foundational material suitable for a one-semester course on functional analysis and linear operators. Additionally, Part I includes enrichment topics that provide flexibility for instructors.





Part II covers the fundamentals of Banach algebras and C*-algebras, followed by more advanced material on C* and von Neumann algebras. This section is suitable for use in graduate courses, with instructors having the option to select specific topics.





Part III explores a range of important topics in operator theory and operator algebras. These include $H^p$ spaces, isometries and Toeplitz operators, nest algebras, dilation theory, applications to various classes of nonself-adjoint operator algebras, and noncommutative convexity and Choquet theory. This material is suitable for graduate courses and learning seminars, offering instructors flexibility in selecting topics.
Part I Functional Analysis.- 1 Set Theory and Topology.- 2 Banach
Spaces.- 3 LCTVSs and Weak Topologies.- 4 Linear Operators.- 5 Compact
Operators.- Part II Banach and C*-algebras.- 6 Banach Algebras.- 7
Commutative Banach Algebras.- 8 Noncommutative Banach Algebras.- 9
C*-Algebras.- 10 Von Neumann Algebras.- Part III Operator Theory.- 11 Hardy
Spaces.- 12 Isometries and Toeplitz Operators.- 13 Nest Algebras.- 14
Dilation Theory.- 15 Nonselfadjoint Operator Algebras.- 16 Noncommutative
Convexity.