Muutke küpsiste eelistusi

Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications [Kõva köide]

Edited by
  • Formaat: Hardback, 656 pages, kõrgus x laius x paksus: 252x178x33 mm, kaal: 1406 g
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527342540
  • ISBN-13: 9783527342549
Teised raamatud teemal:
  • Kõva köide
  • Hind: 237,15 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Hardback, 656 pages, kõrgus x laius x paksus: 252x178x33 mm, kaal: 1406 g
  • Ilmumisaeg: 21-Mar-2018
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527342540
  • ISBN-13: 9783527342549
Teised raamatud teemal:
The first book to explore the potential of tunable functionalities in organic and hybrid nanostructured materials in a unified manner. The highly experienced editor and a team of leading experts review the promising and enabling aspects of this exciting materials class, covering the design, synthesis and/or fabrication, properties and applications. The broad topical scope includes organic polymers, liquid crystals, gels, stimuli-responsive surfaces, hybrid membranes, metallic, semiconducting and carbon nanomaterials, thermoelectric materials, metal-organic frameworks, luminescent and photochromic materials, and chiral and self-healing materials. For materials scientists, nanotechnologists as well as organic, inorganic, solid state and polymer chemists.
Preface xiii
1 Controllable Self-Assembly of One-Dimensional Nanocrystals 1(38)
Shaoyi Zhang
Yang Yang
Zhihong Nie
1.1 Introduction
1(1)
1.2 Assembly Strategies
2(23)
1.2.1 Templated Assembly
2(5)
1.2.1.1 Geometrically Patterned Template
2(2)
1.2.1.2 Chemically Patterned Template
4(3)
1.2.2 Field-Driven Assembly
7(6)
1.2.2.1 Assembly under Electric Field
7(3)
1.2.2.2 Magnetic Field
10(2)
1.2.2.3 Flow Field
12(1)
1.2.3 Assembly at Interfaces and Surface
13(6)
1.2.3.1 Liquid-Liquid Interface
14(1)
1.2.3.2 Liquid-Air Interface
15(2)
1.2.3.3 Evaporation-Mediated Assembly on Solid Surface
17(2)
1.2.4 Ligand-Guided Assembly
19(21)
1.2.4.1 Small Molecules
19(2)
1.2.4.2 Polymeric Species
21(2)
1.2.4.3 Biomolecular Ligand
23(2)
1.3 Properties and Applications
25(3)
1.4 Perspectives and Challenges
28(1)
References
29(10)
2 Self-Assembled Graphene Nanostructures and Their Applications 39(36)
Dingshan Yu
Zhongke Yuan
Xiaofen Xiao
Quan Li
2.1 Introduction
39(1)
2.2 State-of-the-Art Self-Assembly Strategies of Graphene Nanostructures
40(17)
2.2.1 Langmuir-Blodgett (LB) Method
40(2)
2.2.2 Layer-by-Layer (LbL) Assembly Method
42(1)
2.2.3 Flow-, Evaporation-, and Interface-Induced Self-Assembly
43(2)
2.2.4 Template-Directed Self-Assembly and Hydrothermal Processes
45(1)
2.2.5 Spin- and Space-Confinement Self-Assembly
46(3)
2.2.6 Composites with Carbon Nanomaterials
49(2)
2.2.7 Composites with Polymers
51(2)
2.2.8 Composites with Metal or Metal Compounds
53(4)
2.3 Applications of Self-Assembled Graphene Nanostructures
57(4)
2.3.1 Optoelectronics and Photocatalysis
57(2)
2.3.2 Electrochemical Energy Storage
59(1)
2.3.3 Electrocatalysis
60(1)
2.4 Outlook
61(1)
References
62(13)
3 Photochromic Organic and Hybrid Self-Organized Nanostructured Materials: From Design to Applications 75(38)
Ling Wang
Quan Li
3.1 Introduction
75(1)
3.2 Photochromic Organic and Hybrid Nanoparticles
76(11)
3.2.1 Noble Metal Nanoparticles with Photochromic Molecules
77(4)
3.2.2 Fluorescent Nanoparticles with Photochromic Molecules
81(2)
3.2.3 Mesoporous Silica Nanoparticles with Photochromic Molecules
83(4)
3.3 Photochromic Carbon-Based Nanomaterials
87(4)
3.3.1 Carbon Nanotubes with Photochromic Molecules
87(3)
3.3.2 Graphene Derivatives with Photochromic Molecules
90(1)
3.4 Photochromic Chiral Liquid-Crystalline Nanostructured Materials
91(9)
3.4.1 Cholesteric Liquid-Crystalline Superstructures
93(4)
3.4.2 Liquid-Crystalline Blue Phase Superstructures
97(1)
3.4.3 Liquid-Crystalline Microshells and Microdroplets
98(2)
3.5 Summary and Perspective
100(1)
Acknowledgments
101(1)
References
101(12)
4 Photoresponsive Host-Guest Nanostructured Supramolecular Systems 113(52)
Da-Hui Qu
Wen-Zhi Wang
He Tian
4.1 Introduction
113(1)
4.2 Photoresponsive Supramolecular Polymers and Their Assemblies
114(34)
4.2.1 Supramolecular Interactions in the Main Chain
115(18)
4.2.2 Supramolecular Interactions in the Side Chain
133(6)
4.2.3 Supramolecular Complexations as Cross-Linkers between Branched Polymer Chains
139(1)
4.2.4 Photoresponsive Supramolecular Micelles, Vesicles, and Other Assemblies
140(8)
4.3 Photoresponsive Host-Guest Systems Immobilized on Surfaces
148(9)
4.4 Conclusions and Prospects
157(1)
Acknowledgments
157(1)
Abbreviations
157(1)
References
158(7)
5 π-Electronic Ion-Pairing Assemblies Providing Nanostructured Materials 165(38)
Yohei Haketa
Hiromitsu Maeda
5.1 Introduction
165(2)
5.2 Nanostructures Based on Self-Assembling π-Electronic Charged Species
167(8)
5.2.1 Formation of Nanofibers
167(5)
5.2.2 Formation of Nanotubes and Others
172(3)
5.3 Ionic Liquid Crystals Based on π-Electronic Charged Species
175(2)
5.4 Assemblies Based on Genuine π-Electronic Ions
177(7)
5.5 Ion-Pairing Assemblies Based on π-Electronic Anion-Responsive Molecules
184(9)
5.5.1 Solid-State Assemblies Based on π-Electronic Anion-Responsive Molecules
184(2)
5.5.2 Solid-State Assemblies of Receptor-Anion Complexes
186(1)
5.5.3 Ion-Pairing Supramolecular Gels
186(2)
5.5.4 Ion-Pairing Liquid Crystals Based on π-Electronic Charged Species
188(5)
5.6 Conclusion
193(1)
References
194(9)
6 Stimuli-Responsive Nanostructured Surfaces for Biomedical Applications 203(44)
Barbara Santos Gomes
Paula M. Mendes
6.1 Introduction
203(1)
6.2 Thin-Film Formation by Assembly on Surfaces
204(2)
6.3 Lithographic Techniques
206(3)
6.4 Electrically Driven Nanostructured Responsive Surfaces
209(7)
6.5 Photodriven Nanostructured Responsive Surfaces
216(6)
6.6 Thermo-Driven Nanostructured Responsive Surfaces
222(5)
6.7 Chemically Controlled Nanostructured Surfaces
227(7)
6.8 Concluding Remarks and Perspectives
234(1)
References
235(12)
7 Stimuli-Directed Self-Organized One-Dimensional Organic Semiconducting Nanostructures for Optoelectronic Applications 247(60)
A.S. Achalkumar
Manoj Mathews
Quan Li
7.1 Introduction to Discotic Liquid Crystals
247(3)
7.2 Application of Columnar Phases in Organic Electronics
250(3)
7.3 Alignment of Col LC Phases through Different Stimuli
253(40)
7.3.1 Alignment Control by Molecular Design
255(7)
7.3.2 Alignment Control of Columnar Phase through Physical Methods
262(97)
7.3.2.1 Surface Treatment
262(4)
7.3.2.2 Langmuir-Blodgett (LB) Deposition
266(3)
7.3.2.3 Application of Self-Assembled Monolayers
269(4)
7.3.2.4 Application of Chemically Modified Surfaces and Dewetting
273(3)
7.3.2.5 Application of Sacrificial Layer
276(1)
7.3.2.6 Alignment in Nanopores and Nanogrooves
277(4)
7.3.2.7 Zone Casting
281(1)
7.3.2.8 Zone Melting
282(1)
7.3.2.9 Dip Coating, Solvent Vapor Annealing, and Solvent-Induced Precipitation
283(4)
7.3.2.10 Magnetic-Field-Induced Alignment
287(1)
7.3.2.11 Electric-Field-Induced Alignment
288(2)
7.3.2.12 Photoalignment by Infrared Irradiation
290(1)
7.3.2.13 Other Alignment Techniques
291(2)
7.4 Conclusions and Perspective
293(2)
References
295(12)
8 Stimuli-Directed Helical Axis Switching in Chiral Liquid Crystal Nanostructures 307(52)
Rafael S. Zola
Quan Li
8.1 Introduction
307(1)
8.2 Self-Organized Chiral Nematic LCs
308(3)
8.3 Field-Induced Helical Axis Switching: Dielectric/Magnetic Torque and Flexoelectric Effect
311(8)
8.4 Optically Driven Helical Axis Switching
319(9)
8.5 Confinement Mediated Helical Axis Change
328(11)
8.6 Helical Axis Switching in CLC Polymer Composites
339(6)
8.7 Summary and Outlook
345(1)
References
346(13)
9 Electrically Driven Self-Organized Chiral Liquid-Crystalline Nanostructures: Organic Molecular Photonic Crystal with Tunable Bandgap 359(24)
Suman K. Manna
Thomas F. George
Guoqiang Li
9.1 Introduction
359(3)
9.1.1 Photonic Crystal
359(1)
9.1.2 Photonic Bandgap
359(2)
9.1.3 Light Propagation in 1D Photonic Bandgap Medium
361(1)
9.2 Self-Assembled Photonic Crystals
362(4)
9.2.1 Opal Structure
363(1)
9.2.2 Cholesteric Liquid Crystal
363(3)
9.2.2.1 Liquid Crystal
364(1)
9.2.2.2 Nonchiral Liquid-Crystalline Phase
364(1)
9.2.2.3 Chiral Liquid-Crystalline Phase (Cholesteric)
365(1)
9.3 Electric-Field-Induced, Self-Assembled, Tunable Photonic Crystals
366(11)
9.3.1 Self-Assembled Tunable Opal
367(1)
9.3.2 Electric-Field-Induced, Self-Assembled, Tunable CLC
367(1)
9.3.3 Transverse-Electric-Field-Induced Tunable CLCs
368(3)
9.3.4 Polymer-Stabilized Tunable CLCs
371(2)
9.3.5 Lower Elastic Constant LC Host
373(1)
9.3.6 Negative LC Host
374(3)
9.4 Conclusions
377(1)
Acknowledgments
378(1)
References
378(5)
10 Nanostructured Organic-Inorganic Hybrid Membranes for High-Temperature Proton Exchange Membrane Fuel Cells 383(36)
Jin Zhang
San Ping Jiang
10.1 Introduction
383(3)
10.2 Nanostructured Nafion-Based Hybrid Membranes
386(8)
10.2.1 Nafion Hybrid Membrane Based on Metal Oxides
387(7)
10.2.1.1 Casting Method
388(3)
10.2.1.2 In situ Sol-Gel Method
391(2)
10.2.1.3 Liquid-Phase Deposition Method
393(1)
10.2.2 Nafion Hybrid Membrane Based on Proton Conductors
394(1)
10.3 Hydrocarbon Polymer-Based Hybrid Membranes
394(2)
10.4 Nanostructured PBI-Based Hybrid Membranes
396(8)
10.4.1 Addition of Non-proton Conductors
398(2)
10.4.2 Conductive Inorganic Fillers
400(45)
10.4.2.1 Functionalization of Inorganic Fillers
400(2)
10.4.2.2 Proton-Conductor-Incorporated Inorganic Fillers
402(2)
10.5 Alternative PA-Doped Hybrid Membranes
404(1)
10.6 Conclusions and Outlook
405(3)
Acknowledgment
408(1)
References
408(11)
11 Two-Dimensional Organic and Hybrid Porous Frameworks as Novel Electronic Material Systems: Electronic Properties and Advanced Energy Conversion Functions 419(26)
Ken Sakaushi
11.1 Introduction
419(3)
11.2 Electronic Function Control in Two-Dimensional Organic and Hybrid Porous Frameworks
422(2)
11.3 Electronic Functions in 2D Organic Frameworks and Applications
424(9)
11.4 Electronic Functions in Two-Dimensional Hybrid Porous Frameworks and Applications
433(4)
11.5 Concluding Remarks
437(2)
Acknowledgments
439(1)
References
439(6)
12 Organic/Inorganic Hybrid Nanostructured Materials for Thermoelectric Energy Conversion 445(40)
Yucheng Lan
Xiaoming Wang
Chundong Wang
Mona Zebarjadi
12.1 Introduction
445(9)
12.1.1 Inorganic Thermoelectric Materials
447(2)
12.1.2 Organic Thermoelectric Materials
449(4)
12.1.3 Hybrid Thermoelectric Nanostructured Composites
453(1)
12.2 Organic/Inorganic Thermoelectric Nanostructured Materials
454(15)
12.2.1 PEDOT Hybrid Nanocomposites
455(3)
12.2.2 PANI Hybrid Nanostructured Composites
458(2)
12.2.3 CNT/Polymer Nanostructured Composites
460(7)
12.2.3.1 CNT/PVAc Composites
461(1)
12.2.3.2 CNT/PANI Nanostructured Composites
462(2)
12.2.3.3 CNT/PEDOT:PSS Nanostructured Composites
464(1)
12.2.3.4 CNT/Bi2Te3 Nanostuctured Composites
465(1)
12.2.3.5 Three-Component CNT Nanostructured Composites
465(2)
12.2.4 Other Hybrid Nanostructured Composites
467(53)
12.2.4.1 P3OT Hybrid Nanocomposites
467(1)
12.2.4.2 PTH Hybrid Nanocomposites
468(1)
12.2.4.3 PPy Hybrid Nanocomposites
468(1)
12.2.4.4 PC Hybrid Nanocomposites
468(1)
12.2.4.5 PHT Hybrid Nanocomposites
468(1)
12.2.4.6 PPT Hybrid Nanocomposites
468(1)
12.2.4.7 P3HT Hybrid Nanocomposites
468(1)
12.2.4.8 PA Hybrid Nanocomposites
469(1)
12.3 Surface-Transfer Doping of Organic/Inorganic Thermoelectric Nanocomposites
469(3)
12.4 Outlook
472(1)
Abbreviations
473(1)
References
473(12)
13 Hybrid Organic-Nitride Semiconductor Nanostructures for Biosensor Applications 485(34)
Paul Bertani
Wu Lu
13.1 Introduction
485(2)
13.2 A1GaN/GaN Functionality and Active Region
487(4)
13.3 Device Fabrication
491(1)
13.4 Au-Linking and Thiol Group Employment
492(2)
13.5 Oxidation of Nitride Surfaces in Preparation for Functionalization
494(3)
13.6 Silanization of Oxidized Nitride Surfaces
497(3)
13.7 DNA Immobilization and Hybridization
500(4)
13.8 Biotin-Streptavidin
504(3)
13.9 ImmunoFETs
507(4)
13.10 Summary and Outlook
511(1)
References
512(7)
14 Polymer-Nanomaterial Composites for Optoacoustic Conversion 519(28)
Taehwa Lee
Hyoung Won Baac
Jong G. Ok
L. Jay Guo
14.1 Introduction
519(1)
14.2 Optoacoustic Conversion in Nanomaterials
520(2)
14.2.1 Fundamentals of Optoacoustic Generation
520(1)
14.2.2 Heat Transfer from the Nanomaterial Absorber to the Surrounding Polymer
521(1)
14.3 Polymer-Nanomaterial Composite for Optoacoustic Conversion
522(9)
14.3.1 Polymer Materials with Light-Absorbing Carbon Fillers
522(5)
14.3.1.1 Carbon Nanotube (CNT) Composite
523(1)
14.3.1.2 Other Carbon-Based Composites
523(4)
14.3.2 Metal-Based Polymer Composites
527(4)
14.3.2.1 Polymer-Metal Nanoparticle Composites
528(1)
14.3.2.2 Polymer-Metal Film Composites
529(2)
14.3.3 Performance Comparison
531(1)
14.4 Applications of Optoacoustic Conversion in Nanocomposites
531(10)
14.4.1 Optoacoustic Generation of Focused Ultrasound for Therapeutic Applications
531(6)
14.4.2 Optoacoustic Generation in Polymer Composites for Ultrasound Imaging
537(2)
14.4.3 CNT-PDMS Composite for Real-Time Terahertz Detection
539(2)
14.5 Outlook and Future Direction
541(3)
14.5.1 New High-Efficiency Optoacoustic Composites with Mechanical Robustness
541(2)
14.5.2 New Optoacoustic Applications
543(1)
References
544(3)
15 Functional Nanostructured Conjugated Polymers 547(28)
Satoshi Matsushita
Benedict San Jose
Kazuo Akagi
15.1 Introduction
547(4)
15.1.1 Circularly Polarized Luminescence
547(1)
15.1.2 CPL in Conjugated Polymers
547(1)
15.1.3 CPL with High gem Using Selective Reflection Property of N*-LCs
548(1)
15.1.4 Dynamic Switching of CPL
549(1)
15.1.5 Chirality Transfer and Chiral Transcription
549(1)
15.1.6 Polyacetylenes
550(1)
15.2 DiLCPAs with Blue and Green LPL
551(3)
15.2.1 Liquid Crystallinity of diLCPAs
552(1)
15.2.2 Linearly Polarized Luminescence of diLCPAs
553(1)
15.3 Lyotropic N* diLCPAs with Green CPL
554(4)
15.3.1 Liquid Crystallinity of diLCPAs
555(2)
15.3.2 Circularly Polarized Luminescence of diLCPAs
557(1)
15.4 Dynamic Switching of CPL by Selective Reflection through a Thermotropic N*-LC
558(3)
15.4.1 Preparation of N*-LC Cells
559(1)
15.4.2 Dynamic Switching of CPL
559(2)
15.5 Liquid-Crystallinity-Enforced Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE
561(6)
15.5.1 Liquid Crystallinity of MonoPAs
563(2)
15.5.2 Chirality of MonoPAs
565(1)
15.5.3 Chirality Transfer from Chiral MonoLCPA to Achiral LCPPE
566(1)
15.6 Conclusions and Outlook
567(1)
Acknowledgments
568(1)
References
569(6)
16 Nanostructured Self-Organized Heliconical Nematic Liquid Crystals: Twist-Bend Nematic Phase 575(48)
Hari K. Bisoyi
Quan Li
16.1 Introduction
575(6)
16.1.1 Liquid Crystals
575(3)
16.1.2 Twist-Bend Nematic (Ntb) Phase
578(3)
16.2 Characterization of Ntb Phase
581(2)
16.3 Ntb Phase in Different Classes of Liquid Crystal Compounds
583(21)
16.3.1 Ntb Phase in a Bent-Core Compound
583(2)
16.3.2 Ntb Phase in Dimers
585(15)
16.3.2.1 Methylene-Linked Dimers
585(9)
16.3.2.2 Ether-Linked Dimers
594(1)
16.3.2.3 Imino-Linked Dimers
595(2)
16.3.2.4 Other Dimers
597(3)
16.3.3 Ntb Phase in Trimers
600(3)
16.3.4 Ntb Phase in Tetramers
603(1)
16.4 Ntb Phase in Mixtures
604(2)
16.5 Heliconical Cholesteric Phase
606(3)
16.6 Summary and Outlook
609(1)
References
610(13)
Index 623
Quan Li is Director of Organic Synthesis and Advanced Materials Laboratory at Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He, as a Principal Investigator and Project Director, has directed the cutting edge research projects funded by U.S. Air Force Office of Scientific Research, U.S. Air Force Research Laboratory, U.S. Army Research Office, U.S. Department of Defense Multidisciplinary University Research Initiative, U.S. National Science Foundation, U.S. National Aeronautics and Space Administration, U.S. Department of Energy, Ohio Board of Regents under Its Research Challenge Program, Ohio Third Frontier, Samsung Electronics, etc. He received his Ph.D. in Organic Chemistry from the Chinese Academy of Sciences (CAS) in Shanghai, where he was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry in February of 1998. He was a recipient of CAS One-Hundred Talents Award (BeiRenJiHua) in 1999. He was Alexander von Humboldt Fellow in Germany. He has won Kent State University Outstanding Research and Scholarship Award. He has also been honored as Guest Professor and Chair Professor by several Universities.