Preface |
|
xiii | |
|
|
1 | (8) |
|
1.1 Introduction and Terminology |
|
|
1 | (1) |
|
1.2 Shannon's Description of a Conventional Cryptosystem |
|
|
2 | (2) |
|
1.3 Statistical Description of a Plaintext Source |
|
|
4 | (3) |
|
|
7 | (2) |
|
2 Classical Cryptosystems |
|
|
9 | (18) |
|
2.1 Caesar, Simple Substitution, Vigenere |
|
|
9 | (7) |
|
|
9 | (1) |
|
2.1.2 Simple Substitution |
|
|
10 | (1) |
|
The System and its Main Weakness |
|
|
10 | (1) |
|
Cryptanalysis by The Method of a Probable Word |
|
|
11 | (2) |
|
2.1.3 Vigenere Cryptosystem |
|
|
13 | (3) |
|
2.2 The Incidence of Coincidences, Kasiski's Method |
|
|
16 | (4) |
|
2.2.1 The Incidence of Coincidences |
|
|
16 | (3) |
|
|
19 | (1) |
|
2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma |
|
|
20 | (5) |
|
|
20 | (1) |
|
2.3.2 The Playfair Cipher |
|
|
20 | (1) |
|
2.3.3 Transposition Ciphers |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (2) |
|
3 Shift Register Sequences |
|
|
27 | (36) |
|
3.1 Pseudo-Random Sequences |
|
|
27 | (4) |
|
3.2 Linear Feedback Shift Registers |
|
|
31 | (18) |
|
3.2.1 (Linear) Feedback Shift Registers |
|
|
31 | (4) |
|
|
35 | (3) |
|
3.2.3 Which Characteristic Polynomials give PN-Sequences? |
|
|
38 | (6) |
|
3.2.4 An Alternative Description of Ω(f) for Irreducible f |
|
|
44 | (2) |
|
3.2.5 Cryptographic Properties of PN Sequences |
|
|
46 | (3) |
|
3.3 Non-Linear Algorithms |
|
|
49 | (11) |
|
3.3.1 Minimal Characteristic Polynomial |
|
|
49 | (3) |
|
3.3.2 The Berlekamp-Massey Algorithm |
|
|
52 | (6) |
|
3.3.3 A Few Observations about Non-Linear Algorithms |
|
|
58 | (2) |
|
|
60 | (3) |
|
|
63 | (12) |
|
4.1 Some General Principles |
|
|
63 | (4) |
|
4.1.1 Some Block Cipher Modes |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
4.1.2 An Identity Verification Protocol |
|
|
66 | (1) |
|
|
67 | (3) |
|
|
67 | (2) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (12) |
|
5.1 Entropy, Redundancy, and Unicity Distance |
|
|
75 | (5) |
|
5.2 Mutual Information and Unconditionally Secure Systems |
|
|
80 | (5) |
|
|
85 | (2) |
|
6 Data Compression Techniques |
|
|
87 | (18) |
|
6.1 Basic Concepts of Source Coding for Stationary Sources |
|
|
87 | (5) |
|
|
92 | (5) |
|
6.3 Universal Data Compression - The Lempel-Ziv Algorithms |
|
|
97 | (6) |
|
|
98 | (1) |
|
|
99 | (2) |
|
|
101 | (2) |
|
|
103 | (2) |
|
7 Public-Key Cryptography |
|
|
105 | (6) |
|
7.1 The Theoretical Model |
|
|
105 | (4) |
|
7.1.1 Motivation and Set-up |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
7.1.4 Confidentiality and Digital Signature |
|
|
108 | (1) |
|
|
109 | (2) |
|
8 Discrete Logarithm Based Systems |
|
|
111 | (36) |
|
8.1 The Discrete Logarithm System |
|
|
111 | (5) |
|
8.1.1 The Discrete Logarithm Problem |
|
|
111 | (3) |
|
8.1.2 The Diffie-Hellman Key Exchange System |
|
|
114 | (2) |
|
8.2 Other Discrete Logarithm Based Systems |
|
|
116 | (4) |
|
8.2.1 ElGamal's Public-Key Cryptosystems |
|
|
116 | (1) |
|
|
116 | (1) |
|
|
116 | (1) |
|
ElGamal's Signature Scheme |
|
|
117 | (2) |
|
|
119 | (1) |
|
Digital Signature Standard |
|
|
119 | (1) |
|
Schnorr's Signature Scheme |
|
|
120 | (1) |
|
The Nyberg-Rueppel Signature Scheme |
|
|
120 | (1) |
|
8.3 How to Take Discrete Logarithms |
|
|
120 | (25) |
|
8.3.1 The Pohlig-Hellman Algorithm |
|
|
121 | (1) |
|
|
121 | (2) |
|
General Case: q - 1 has only small prime factors |
|
|
123 | (1) |
|
An Example of the Pohlig-Hellman Algorithm |
|
|
124 | (3) |
|
8.3.2 The Baby-Step Giant-Step Method |
|
|
127 | (3) |
|
8.3.3 The Pollard-ρ Method |
|
|
130 | (5) |
|
8.3.4 The Index-Calculus Method |
|
|
135 | (1) |
|
|
135 | (1) |
|
Z*p, i.e. the Multiplicative Group of GF(p) |
|
|
136 | (5) |
|
|
141 | (4) |
|
|
145 | (2) |
|
|
147 | (66) |
|
|
147 | (9) |
|
|
147 | (1) |
|
9.1.2 Setting Up the System |
|
|
148 | (1) |
|
Step 1 Computing the Modulus nU |
|
|
148 | (1) |
|
Step 2 Computing the Exponents eU and dU |
|
|
149 | (1) |
|
Step 3 Making Public: eU and nU |
|
|
150 | (1) |
|
|
150 | (3) |
|
|
153 | (1) |
|
9.1.5 RSA for Privacy and Signing |
|
|
154 | (2) |
|
9.2 The Security of RSA: Some Factorization Algorithms |
|
|
156 | (13) |
|
9.2.1 What the Cryptanalist Can Do |
|
|
156 | (2) |
|
9.2.2 A Factorization Algorithm for a Special Class of Integers |
|
|
158 | (1) |
|
|
158 | (3) |
|
9.2.3 General Factorization Algorithms |
|
|
161 | (1) |
|
|
161 | (1) |
|
Random Square Factoring Methods |
|
|
162 | (5) |
|
|
167 | (2) |
|
9.3 Some Unsafe Modes for RSA |
|
|
169 | (13) |
|
9.3.1 A Small Public Exponent |
|
|
169 | (1) |
|
Sending the Same Message to More Receivers ... |
|
|
169 | (2) |
|
Sending Related Messages to a Receiver with Small Public Exponent |
|
|
171 | (5) |
|
9.3.2 A Small Secret Exponent; Wiener's Attack |
|
|
176 | (4) |
|
9.3.3 Some Physical Attacks |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (2) |
|
9.4 How to Generate Large Prime Numbers; Some Primality Tests |
|
|
182 | (15) |
|
9.4.1 Trying Random Numbers |
|
|
182 | (2) |
|
9.4.2 Probabilistic Primality Tests |
|
|
184 | (1) |
|
The Solovay and Strassen Primality Test |
|
|
184 | (3) |
|
|
187 | (3) |
|
9.4.3 A Deterministic Primality Test |
|
|
190 | (7) |
|
|
197 | (12) |
|
9.5.1 The Encryption Function |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
199 | (1) |
|
Finding a Square Root Modulo a Prime Number |
|
|
200 | (4) |
|
|
204 | (2) |
|
9.5.3 How to Distinguish Between the Solutions |
|
|
206 | (2) |
|
9.5.4 The Equivalence of Breaking Rabin's Scheme and Factoring n |
|
|
208 | (1) |
|
|
209 | (4) |
|
10 Elliptic Curves Based Systems |
|
|
213 | (23) |
|
10.1 Some Basic Facts of Elliptic Curves |
|
|
213 | (3) |
|
10.2 The Geometry of Elliptic Curves |
|
|
216 | (7) |
|
A Line Through Two Distinct Points |
|
|
219 | (2) |
|
|
221 | (2) |
|
10.3 Addition of Points on Elliptic Curves |
|
|
223 | (6) |
|
10.4 Cryptosystems Defined over Elliptic Curves |
|
|
229 | (6) |
|
10.4.1 The Discrete Logarithm Problem over Elliptic Curves |
|
|
229 | (1) |
|
10.4.2 The Discrete Logarithm System over Elliptic Curves |
|
|
230 | (3) |
|
10.4.3 The Security of Discrete Logarithm Based EC Systems |
|
|
233 | (2) |
|
|
235 | (1) |
|
11 Coding Theory Based Systems |
|
|
236 | (26) |
|
11.1 Introduction to Goppa codes |
|
|
236 | (4) |
|
11.2 The McEliece Cryptosystem |
|
|
240 | (14) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
Summary and Proposed Parameters |
|
|
242 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
Exhaustive Codewords Comparison |
|
|
244 | (1) |
|
|
245 | (2) |
|
Guessing k Correct and Independent Coordinates |
|
|
247 | (3) |
|
Multiple Encryptions of the Same Message |
|
|
250 | (1) |
|
11.2.4 A Small Example of the McEliece System |
|
|
251 | (3) |
|
11.3 Another Technique to Decode Linear Codes |
|
|
254 | (5) |
|
11.4 The Niederreiter Scheme |
|
|
259 | (1) |
|
|
260 | (2) |
|
12 Knapsack Based Systems |
|
|
262 | (24) |
|
|
262 | (7) |
|
12.1.1 The Knapsack Problem |
|
|
262 | (2) |
|
12.1.2 The Knapsack System |
|
|
264 | (1) |
|
Setting Up the Knapsack System |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (2) |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
270 | (7) |
|
|
272 | (1) |
|
|
273 | (3) |
|
12.2.5 The L3-Lartice Basis Reduction Algorithm |
|
|
276 | (1) |
|
12.3 The Chor-Rivest Variant |
|
|
277 | (8) |
|
|
278 | (3) |
|
|
281 | (1) |
|
|
282 | (3) |
|
|
285 | (1) |
|
13 Hash Codes & Authentication Techniques |
|
|
286 | (28) |
|
|
286 | (1) |
|
13.2 Hash Functions and Mac's |
|
|
287 | (2) |
|
13.3 Unconditionally Secure Authentication Codes |
|
|
289 | (19) |
|
13.3.1 Notions and Bounds |
|
|
289 | (5) |
|
13.3.2 The Projective Plane Construction |
|
|
294 | (1) |
|
A Finite Projective Plane |
|
|
294 | (4) |
|
A General Construction of a Projective Plane |
|
|
298 | (4) |
|
The Projective Plane Authentication Code |
|
|
302 | (2) |
|
13.3.3 A-Codes From Orthogonal Arrays |
|
|
304 | (4) |
|
133.4 A-Codes From Error-Correcting Codes |
|
|
308 | (5) |
|
|
313 | (1) |
|
14 Zero Knowledge Protocols |
|
|
314 | (6) |
|
14.1 The Fiat-Shamir Protocol |
|
|
314 | (2) |
|
14.2 Schnorr's Identification Protocol |
|
|
316 | (3) |
|
|
319 | (1) |
|
15 Secret Sharing Systems |
|
|
320 | (23) |
|
|
320 | (2) |
|
|
322 | (3) |
|
15.3 Threshold Schemes with Liars |
|
|
325 | (2) |
|
15.4 Secret Sharing Schemes |
|
|
327 | (5) |
|
15.5 Visual Secret Sharing Schemes |
|
|
332 | (8) |
|
|
340 | (3) |
|
A Elementary Number Theory |
|
|
343 | (40) |
|
|
343 | (5) |
|
|
348 | (4) |
|
A.3 Congruences, Fermat, Euler, Chinese Remainder Theorem |
|
|
352 | (12) |
|
|
352 | (2) |
|
|
354 | (4) |
|
A.3.3 Solving Linear Congruence Relations |
|
|
358 | (3) |
|
A.3.4 The Chinese Remainder Theorem |
|
|
361 | (3) |
|
|
364 | (5) |
|
|
369 | (9) |
|
A.6 Mobius Inversion Formula, the Principle of Inclusion and Exclusion |
|
|
378 | (4) |
|
A.6.1 Mobius Inversion Formula |
|
|
378 | (2) |
|
A.6.2 The Principle of Inclusion and Exclusion |
|
|
380 | (2) |
|
|
382 | (1) |
|
|
383 | (42) |
|
|
383 | (12) |
|
|
383 | (1) |
|
|
383 | (1) |
|
|
384 | (2) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
387 | (2) |
|
|
389 | (2) |
|
|
391 | (1) |
|
Vector Spaces and Subspaces |
|
|
391 | (1) |
|
Linear Independence, Basis and Dimension |
|
|
392 | (1) |
|
Inner Product, Orthogonality |
|
|
393 | (2) |
|
|
395 | (6) |
|
B.3 The Number of Irreducible Polynomials over GF(q) |
|
|
401 | (4) |
|
B.4 The Structure of Finite Fields |
|
|
405 | (18) |
|
B.4.1 The Cyclic Structure of a Finite Field |
|
|
405 | (4) |
|
B.4.2 The Cardinality of a Finite Field |
|
|
409 | (2) |
|
B.4.3 Some Calculus Rules over Finite Fields; Conjugates |
|
|
411 | (2) |
|
B.4.4 Minimal Polynomials, Primitive Polynomials |
|
|
413 | (5) |
|
|
418 | (2) |
|
B.4.6 Cyclotomic Polynomials |
|
|
420 | (3) |
|
|
423 | (2) |
|
C Relevant Famous Mathematicians |
|
|
425 | (28) |
|
|
425 | (1) |
|
|
426 | (2) |
|
|
428 | (6) |
|
|
434 | (5) |
|
Johann Carl Friedrich Gauss |
|
|
439 | (6) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
447 | (4) |
|
Joseph Henry Maclagen Wedderburn |
|
|
451 | (2) |
|
|
453 | (8) |
References |
|
461 | (8) |
Symbols and Notations |
|
469 | (2) |
Index |
|
471 | |