Muutke küpsiste eelistusi

Fundamentals of Differential Equations 8th edition [Kõva köide]

  • Formaat: Hardback, 720 pages, kõrgus x laius: 254x203 mm, kaal: 1300 g
  • Ilmumisaeg: 26-Apr-2011
  • Kirjastus: Pearson
  • ISBN-10: 0321747739
  • ISBN-13: 9780321747730
Teised raamatud teemal:
  • Kõva köide
  • Hind: 182,79 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 720 pages, kõrgus x laius: 254x203 mm, kaal: 1300 g
  • Ilmumisaeg: 26-Apr-2011
  • Kirjastus: Pearson
  • ISBN-10: 0321747739
  • ISBN-13: 9780321747730
Teised raamatud teemal:

Fundamentals of Differential Equations presents the basic theory of differential equations and offers a variety of modern applications in science and engineering. Available in two versions, these flexible texts offer the instructor many choices in syllabus design, course emphasis (theory, methodology, applications, and numerical methods), and in using commercially available computer software.


Fundamentals of Differential Equations, Eighth Edition is suitable for a one-semester sophomore- or junior-level course. Fundamentals of Differential Equations with Boundary Value Problems, Sixth Edition, contains enough material for a two-semester course that covers and builds on boundary value problems. The Boundary Value Problems version consists of the main text plus three additional chapters (Eigenvalue Problems and Sturm-Liouville Equations; Stability of Autonomous Systems; and Existence and Uniqueness Theory).

Chapter 1 Introduction
1.1 Background
1(5)
1.2 Solutions and Initial Value Problems
6(9)
1.3 Direction Fields
15(8)
1.4 The Approximation Method of Euler
23(12)
Chapter Summary
29(1)
Technical Writing Exercises
29(1)
Group Projects for
Chapter 1
30(1)
A Taylor Series Method
30(1)
B Picard's Method
31(1)
C The Phase Line
32(3)
Chapter 2 First-Order Differential Equations
2.1 Introduction: Motion of a Falling Body
35(3)
2.2 Separable Equations
38(8)
2.3 Linear Equations
46(9)
2.4 Exact Equations
55(9)
2.5 Special Integrating Factors
64(4)
2.6 Substitutions and Transformations
68(21)
Chapter Summary
76(1)
Review Problems
77(1)
Technical Writing Exercises
78(1)
Group Projects for
Chapter 2
79(1)
A Oil Spill in a Canal
79(1)
B Differential Equations in Clinical Medicine
80(2)
C Torricelli's Law of Fluid Flow
82(1)
D The Snowplow Problem
83(1)
E Two Snowplows
83(1)
F Clairaut Equations and Singular Solutions
84(1)
G Multiple Solutions of a First-Order Initial Value Problem
85(1)
H Utility Functions and Risk Aversion
85(1)
I Designing a Solar Collector
86(1)
J Asymptotic Behavior of Solutions to Linear Equations
87(2)
Chapter 3 Mathematical Models and Numerical Methods Involving First-Order Equations
3.1 Mathematical Modeling
89(2)
3.2 Compartmental Analysis
91(10)
3.3 Heating and Cooling of Buildings
101(7)
3.4 Newtonian Mechanics
108(9)
3.5 Electrical Circuits
117(4)
3.6 Improved Euler's Method
121(11)
3.7 Higher-Order Numerical Methods: Taylor and Runge-Kutta
132(21)
Group Projects for
Chapter 3
414
A Dynamics of HIV Infection
141(3)
B Aquaculture
144(1)
C Curve of Pursuit
145(1)
D Aircraft Guidance in a Crosswind
146(1)
E Feedback and the Op Amp
147(1)
F Bang-Bang Controls
148(1)
G Market Equilibrium: Stability and Time Paths
149(1)
H Stability of Numerical Methods
150(1)
I Period Doubling and Chaos
151(2)
Chapter 4 Linear Second-Order Equations
4.1 Introduction: The Mass-Spring Oscillator
153(5)
4.2 Homogeneous Linear Equations: The General Solution
158(9)
4.3 Auxiliary Equations with Complex Roots
167(8)
4.4 Nonhomogeneous Equations: The Method of Undetermined Coefficients
175(7)
4.5 The Superposition Principle and Undetermined Coefficients Revisited
182(7)
4.6 Variation of Parameters
189(4)
4.7 Variable-Coefficient Equations
193(10)
4.8 Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
203(11)
4.9 A Closer Look at Free Mechanical Vibrations
214(9)
4.10 A Closer Look at Forced Mechanical Vibrations
223(19)
Chapter Summary
231(2)
Review Problems
233(1)
Technical Writing Exercises
234(1)
Group Projects for
Chapter 4
235(1)
A Nonlinear Equations Solvable by First-Order Techniques
235(1)
B Apollo Reentry
236(1)
C Simple Pendulum
237(1)
D Linearization of Nonlinear Problems
238(1)
E Convolution Method
239(1)
F Undetermined Coefficients Using Complex Arithmetic
239(2)
G Asymptotic Behavior of Solutions
241(1)
Chapter 5 Introduction to Systems and Phase Plane Analysis
5.1 Interconnected Fluid Tanks
242(2)
5.2 Differential Operators and the Elimination Method for Systems
244(9)
5.3 Solving Systems and Higher-Order Equations Numerically
253(10)
5.4 Introduction to the Phase Plane
263(13)
5.5 Applications to Biomathematics: Epidemic and Tumor Growth Models
276(9)
5.6 Coupled Mass-Spring Systems
285(6)
5.7 Electrical Systems
291(6)
5.8 Dynamical Systems, Poincare Maps, and Chaos
297(21)
Chapter Summary
307(1)
Review Problems
308(1)
Group Projects for
Chapter 5
309(1)
A Designing a Landing System for Interplanetary Travel
309(1)
B Spread of Staph Infections in Hospitals---Part I
310(2)
C Things That Bob
312(1)
D Hamiltonian Systems
313(2)
E Cleaning Up the Great Lakes
315(1)
F A Growth Model for Phytoplankton---Part I
316(2)
Chapter 6 Theory of Higher-Order Linear Differential Equations
6.1 Basic Theory of Linear Differential Equations
318(9)
6.2 Homogeneous Linear Equations with Constant Coefficients
327(6)
6.3 Undetermined Coefficients and the Annihilator Method
333(5)
6.4 Method of Variation of Parameters
338(12)
Chapter Summary
342(1)
Review Problems
343(1)
Technical Writing Exercises
344(1)
Group Projects for
Chapter 6
345(1)
A Computer Algebra Systems and Exponential Shift
345(1)
B Justifying the Method of Undetermined Coefficients
346(1)
C Transverse Vibrations of a Beam
347(1)
D Higher-Order Difference Equations
347(3)
Chapter 7 LaplaceTransforms
7.1 Introduction; A Mixing Problem
350(3)
7.2 Definition of the Laplace Transform
353(8)
7.3 Properties of the Laplace Transform
361(5)
7.4 Inverse Laplace Transform
366(10)
7.5 Solving Initial Value Problems
376(7)
7.6 Transforms of Discontinuous and Periodic Functions
383(14)
7.7 Convolution
397(7)
7.8 Impulses and the Dirac Delta Function
404(8)
7.9 Solving Linear Systems with Laplace Transforms
412(10)
Chapter Summary
414(2)
Review Problems
416(1)
Technical Writing Exercises
417(1)
Group Projects for
Chapter 7
418(1)
A Duhamel's Formulas
418(1)
B Frequency Response Modeling
419(2)
C Determining System Parameters
421(1)
Chapter 8 Series Solutions of Differential Equations
8.1 Introduction: The Taylor Polynomial Approximation
422(5)
8.2 Power Series and Analytic Functions
427(9)
8.3 Power Series Solutions to Linear Differential Equations
436(10)
8.4 Equations with Analytic Coefficients
446(6)
8.5 Cauchy-Euler (Equidimensional) Equations
452(3)
8.6 Method of Frobenius
455(12)
8.7 Finding a Second Linearly Independent Solution
467(9)
8.8 Special Functions
476(22)
Chapter Summary
489(2)
Review Problems
491(1)
Technical Writing Exercises
492(1)
Group Projects for
Chapter 8
493(1)
A Alphabetization Algorithms
493(1)
B Spherically Symmetric Solutions to Shrodinger's Equation for the Hydrogen Atom
494(1)
C Airy's Equation
495(1)
D Buckling of a Tower
495(2)
E Aging Spring and Bessel Functions
497(1)
Chapter 9 Matrix Methods for Linear Systems
9.1 Introduction
498(4)
9.2 Review 1: Linear Algebraic Equations
502(5)
9.3 Review 2: Matrices and Vectors
507(10)
9.4 Linear Systems in Normal Form
517(9)
9.5 Homogeneous Linear Systems with Constant Coefficients
526(12)
9.6 Complex Eigenvalues
538(5)
9.7 Nonhomogeneous Linear Systems
543(7)
9.8 The Matrix Exponential Function
550(16)
Chapter Summary
558(3)
Review Problems
561(1)
Technical Writing Exercises
562(1)
Group Projects for
Chapter 9
563(1)
A Uncoupling Normal Systems
563(1)
B Matrix Laplace Transform Method
564(1)
C Undamped Second-Order Systems
565(1)
Chapter 10 Partial Differential Equations
10.1 Introduction: A Model for Heat Flow
566(3)
10.2 Method of Separation of Variables
569(9)
10.3 Fourier Series
578(16)
10.4 Fourier Cosine and Sine Series
594(5)
10.5 The Heat Equation
599(12)
10.6 The Wave Equation
611(12)
10.7 Laplace's Equation
623
Chapter Summary
636(1)
Technical Writing Exercises
637(1)
Group Projects for
Chapter 10
638(1)
A Steady-State Temperature Distribution in a Circular Cylinder
638(2)
B Laplace Transform Solution of the Wave Equation
640(1)
C Green's Function
641(1)
D Numerical Method for Δu = f on a Rectangle
642
APPENDICES
A Review of Integration Techniques
1(7)
B Newton's Method
8(2)
C Simpson's Rule
10(1)
D Cramer's Rule
11(2)
E Method of Least Squares
13(2)
F Runge-Kutta Procedure for n Equations
15
Answers to Odd-Numbered Problems 1(1)
Index 1