Muutke küpsiste eelistusi

Fundamentals of Heat and Mass Transfer 8th ed. [köitmata]

  • Formaat: Loose-leaf, 992 pages, kõrgus x laius x paksus: 254x198x33 mm, kaal: 1590 g, Contains 1 Loose-leaf
  • Ilmumisaeg: 05-Jun-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119722489
  • ISBN-13: 9781119722489
Teised raamatud teemal:
  • Formaat: Loose-leaf, 992 pages, kõrgus x laius x paksus: 254x198x33 mm, kaal: 1590 g, Contains 1 Loose-leaf
  • Ilmumisaeg: 05-Jun-2020
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 1119722489
  • ISBN-13: 9781119722489
Teised raamatud teemal:

With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective.


Fundamentals of Heat and Mass Transfer 8th Edition
has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline. This edition makes heat and mass transfer more approachable by giving additional emphasis to fundamental concepts, while highlighting the relevance of two of today’s most critical issues: energy and the environment.

Symbols xix
Chapter 1 Introduction
1(46)
1.1 What and How?
2(1)
1.2 Physical Origins and Rate Equations
3(9)
1.2.1 Conduction
3(3)
1.2.2 Convection
6(2)
1.2.3 Radiation
8(4)
1.2.4 The Thermal Resistance Concept
12(1)
1.3 Relationship to Thermodynamics
12(21)
1.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy)
13(15)
1.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines
28(5)
1.4 Units and Dimensions
33(2)
1.5 Analysis of Heat Transfer Problems: Methodology
35(3)
1.6 Relevance of Heat Transfer
38(4)
1.7 Summary
42(3)
References
45(2)
Chapter 2 Introduction to Conduction
47(30)
2.1 The Conduction Rate Equation
48(2)
2.2 The Thermal Properties of Matter
50(12)
2.2.1 Thermal Conductivity
57(1)
2.2.2 Other Relevant Properties
58(4)
2.3 The Heat Diffusion Equation
62(8)
2.4 Boundary and Initial Conditions
70(4)
2.5 Summary
74(1)
References
75(2)
Chapter 3 One-Dimensional, Steady-State Conduction
77(84)
3.1 The Plane Wall
78(21)
3.1.1 Temperature Distribution
78(2)
3.1.2 Thermal Resistance
80(1)
3.1.3 The Composite Wall
81(2)
3.1.4 Contact Resistance
83(2)
3.1.5 Porous Media
85(14)
3.2 An Alternative Conduction Analysis
99(4)
3.3 Radial Systems
103(6)
3.3.1 The Cylinder
103(5)
3.3.2 The Sphere
108(1)
3.4 Summary of One-Dimensional Conduction Results
109(1)
3.5 Conduction with Thermal Energy Generation
109(12)
3.5.1 The Plane Wall
110(6)
3.5.2 Radial Systems
116(1)
3.5.3 Tabulated Solutions
117(1)
3.5.4 Application of Resistance Concepts
117(4)
3.6 Heat Transfer from Extended Surfaces
121(20)
3.6.1 A General Conduction Analysis
123(2)
3.6.2 Fins of Uniform Cross-Sectional Area
125(6)
3.6.3 Fin Performance Parameters
131(3)
3.6.4 Fins of Nonuniform Cross-Sectional Area
134(3)
3.6.5 Overall Surface Efficiency
137(4)
3.7 Other Applications of One-Dimensional, Steady-State Conduction
141(16)
3.7.1 The Bioheat Equation
141(4)
3.7.2 Thermoelectric Power Generation
145(8)
3.7.3 Nanoscale Conduction
153(4)
3.8 Summary
157(2)
References
159(2)
Chapter 4 Two-Dimensional, Steady-State Conduction
161(30)
4.1 General Considerations and Solution Techniques
162(1)
4.2 The Method of Separation of Variables
163(4)
4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate
167(6)
4.4 Finite-Difference Equations
173(9)
4.4.1 The Nodal Network
173(1)
4.4.2 Finite-Difference Form of the Heat Equation: No Generation and Constant Properties
174(1)
4.4.3 Finite-Difference Form of the Heat Equation: The Energy Balance Method
175(7)
4.5 Solving the Finite-Difference Equations
182(6)
4.5.1 Formulation as a Matrix Equation
182(1)
4.5.2 Verifying the Accuracy of the Solution
183(5)
4.6 Summary
188(1)
References
189(2)
Chapter 5 Transient Conduction
191(68)
5.1 The Lumped Capacitance Method
192(3)
5.2 Validity of the Lumped Capacitance Method
195(4)
5.3 General Lumped Capacitance Analysis
199(11)
5.3.1 Radiation Only
200(1)
5.3.2 Negligible Radiation
200(1)
5.3.3 Convection Only with Variable Convection Coefficient
201(1)
5.3.4 Additional Considerations
201(9)
5.4 Spatial Effects
210(1)
5.5 The Plane Wall with Convection
211(4)
5.5.1 Exact Solution
212(1)
5.5.2 Approximate Solution
212(2)
5.5.3 Total Energy Transfer: Approximate Solution
214(1)
5.5.4 Additional Considerations
214(1)
5.6 Radial Systems with Convection
215(7)
5.6.1 Exact Solutions
215(1)
5.6.2 Approximate Solutions
216(1)
5.6.3 Total Energy Transfer: Approximate Solutions
216(1)
5.6.4 Additional Considerations
217(5)
5.7 The Semi-Infinite Solid
222(7)
5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes
229(1)
5.8.1 Constant Temperature Boundary Conditions
229(2)
5.8.2 Constant Heat Flux Boundary Conditions
231(1)
5.8.3 Approximate Solutions
232(7)
5.9 Periodic Heating
239(3)
5.10 Finite-Difference Methods
242(14)
5.10.1 Discretization of the Heat Equation: The Explicit Method
242(7)
5.10.2 Discretization of the Heat Equation: The Implicit Method
249(7)
5.11 Summary
256(1)
References
257(2)
Chapter 6 Introduction to Convection
259(44)
6.1 The Convection Boundary Layers
260(4)
6.1.1 The Velocity Boundary Layer
260(1)
6.1.2 The Thermal Boundary Layer
261(2)
6.1.3 The Concentration Boundary Layer
263(1)
6.1.4 Significance of the Boundary Layers
264(1)
6.2 Local and Average Convection Coefficients
264(7)
6.2.1 Heat Transfer
264(1)
6.2.2 Mass Transfer
265(6)
6.3 Laminar and Turbulent Flow
271(5)
6.3.1 Laminar and Turbulent Velocity Boundary Layers
271(2)
6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers
273(3)
6.4 The Boundary Layer Equations
276(4)
6.4.1 Boundary Layer Equations for Laminar Flow
277(3)
6.4.2 Compressible Flow
280(1)
6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations
280(10)
6.5.1 Boundary Layer Similarity Parameters
281(1)
6.5.2 Dependent Dimensionless Parameters
281(9)
6.6 Physical Interpretation of the Dimensionless Parameters
290(2)
6.7 Boundary Layer Analogies
292(8)
6.7.1 The Heat and Mass Transfer Analogy
293(3)
6.7.2 Evaporative Cooling
296(3)
6.7.3 The Reynolds Analogy
299(1)
6.8 Summary
300(1)
References
301(2)
Chapter 7 External Flow
303(54)
7.1 The Empirical Method
305(1)
7.2 The Flat Plate in Parallel Flow
306(11)
7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution
307(6)
7.2.2 Turbulent Flow over an Isothermal Plate
313(1)
7.2.3 Mixed Boundary Layer Conditions
314(1)
7.2.4 Unheated Starting Length
315(1)
7.2.5 Flat Plates with Constant Heat Flux Conditions
316(1)
7.2.6 Limitations on Use of Convection Coefficients
317(1)
7.3 Methodology for a Convection Calculation
317(8)
7.4 The Cylinder in Cross Flow
325(10)
7.4.1 Flow Considerations
325(2)
7.4.2 Convection Heat and Mass Transfer
327(8)
7.5 The Sphere
335(3)
7.6 Flow Across Banks of Tubes
338(9)
7.7 Impinging Jets
347(5)
7.7.1 Hydrodynamic and Geometric Considerations
347(1)
7.7.2 Convection Heat and Mass Transfer
348(4)
7.8 Packed Beds
352(1)
7.9 Summary
353(3)
References
356(1)
Chapter 8 Internal Flow
357(52)
8.1 Hydrodynamic Considerations
358(5)
8.1.1 Flow Conditions
358(1)
8.1.2 The Mean Velocity
359(1)
8.1.3 Velocity Profile in the Fully Developed Region
360(2)
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow
362(1)
8.2 Thermal Considerations
363(6)
8.2.1 The Mean Temperature
364(1)
8.2.2 Newton's Law of Cooling
365(1)
8.2.3 Fully Developed Conditions
365(4)
8.3 The Energy Balance
369(8)
8.3.1 General Considerations
369(1)
8.3.2 Constant Surface Heat Flux
370(3)
8.3.3 Constant Surface Temperature
373(4)
8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
377(7)
8.4.1 The Fully Developed Region
377(5)
8.4.2 The Entry Region
382(2)
8.4.3 Temperature-Dependent Properties
384(1)
8.5 Convection Correlations: Turbulent Flow in Circular Tubes
384(8)
8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
392(3)
8.7 Heat Transfer Enhancement
395(3)
8.8 Forced Convection in Small Channels
398(5)
8.8.1 Microscale Convection in Gases (0.1 μm 100 μm)
398(1)
8.8.2 Microscale Convection in Liquids
399(1)
8.8.3 Nanoscale Convection (Dh 100 nm)
400(3)
8.9 Convection Mass Transfer
403(2)
8.10 Summary
405(3)
References
408(1)
Chapter 9 Free Convection
409(5)
9.1 Physical Considerations
410(2)
9.2 The Governing Equations for Laminar Boundary Layers
412(2)
93 Similarity Considerations
414(35)
9.4 Laminar Free Convection on a Vertical Surface
415(3)
9.5 The Effects of Turbulence
418(2)
9.6 Empirical Correlations: External Free Convection Flows
420(14)
9.6.1 The Vertical Plate
421(3)
9.6.2 Inclined and Horizontal Plates
424(5)
9.6.3 The Long Horizontal Cylinder
429(4)
9.6.4 Spheres
433(1)
9.7 Free Convection Within Parallel Plate Channels
434(3)
9.7.1 Vertical Channels
435(2)
9.7.2 Inclined Channels
437(1)
9.8 Empirical Correlations: Enclosures
437(6)
9.8.1 Rectangular Cavities
437(3)
9.8.2 Concentric Cylinders
440(1)
9.8.3 Concentric Spheres
441(2)
9.9 Combined Free and Forced Convection
443(1)
9.10 Convection Mass Transfer
444(1)
9.11 Summary
445(1)
References
446(3)
Chapter 10 Boiling and Condensation
449(42)
10.1 Dimensionless Parameters in Boiling and Condensation
450(1)
10.2 Boiling Modes
451(1)
10.3 Pool Boiling
452(4)
10.3.1 The Boiling Curve
452(1)
10.3.2 Modes of Pool Boiling
453(3)
10.4 Pool Boiling Correlations
456(9)
10.4.1 Nucleate Pool Boiling
456(2)
10.4.2 Critical Heat Flux for Nucleate Pool Boiling
458(1)
10.4.3 Minimum Heat Flux
459(1)
10.4.4 Film Pool Boiling
459(1)
10.4.5 Parametric Effects on Pool Boiling
460(5)
10.5 Forced Convection Boiling
465(4)
10.5.1 External Forced Convection Boiling
466(1)
10.5.2 Two-Phase Flow
466(3)
10.5.3 Two-Phase Flow in MicroChannel
469(1)
10.6 Condensation: Physical Mechanisms
469(2)
10.7 Laminar Film Condensation on a Vertical Plate
471(4)
10.8 Turbulent Film Condensation
475(5)
10.9 Film Condensation on Radial Systems
480(5)
10.10 Condensation in Horizontal Tubes
485(1)
10.11 Dropwise Condensation
486(1)
10.12 Summary
487(1)
References
487(4)
Chapter 11 Heat Exchangers
491(44)
11.1 Heat Exchanger Types
492(2)
11.2 The Overall Heat Transfer Coefficient
494(3)
11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
497(11)
11.3.1 The Parallel-Flow Heat Exchanger
498(2)
11.3.2 The Counterflow Heat Exchanger
500(7)
11.3.3 Special Operating Conditions
507(1)
11.4 Heat Exchanger Analysis: The Effectiveness-NTU Method
508(8)
11.4.1 Definitions
508(1)
11.4.2 Effectiveness--NTU Relations
509(7)
11.5 Heat Exchanger Design and Performance Calculations
516(9)
11.6 Additional Considerations
525(8)
11.7 Summary
533(1)
References
534(1)
Chapter 12 Radiation: Processes and Properties
535(64)
12.1 Fundamental Concepts
536(3)
12.2 Radiation Heat Fluxes
539(2)
12.3 Radiation Intensity
541(9)
12.3.1 Mathematical Definitions
541(1)
12.3.2 Radiation Intensity and Its Relation to Emission
542(5)
12.3.3 Relation to Irradiation
547(2)
12.3.4 Relation to Radiosity for an Opaque Surface
549(1)
12.3.5 Relation to the Net Radiative Flux for an Opaque Surface
550(1)
12.4 Blackbody Radiation
550(10)
12.4.1 The Planck Distribution
551(1)
12.4.2 Wien's Displacement Law
552(1)
12.4.3 The Stefan--Boltzmann Law
552(1)
12.4.4 Band Emission
553(7)
12.5 Emission from Real Surfaces
560(9)
12.6 Absorption, Reflection, and Transmission by Real Surfaces
569(9)
12.6.1 Absorptivity
570(1)
12.6.2 Reflectivity
571(2)
12.6.3 Transmissivity
573(1)
12.6.4 Special Considerations
573(5)
12.7 Kirchhoff's Law
578(2)
12.8 The Gray Surface
580(6)
12.9 Environmental Radiation
586(8)
12.9.1 Solar Radiation
587(2)
12.9.2 The Atmospheric Radiation Balance
589(2)
12.9.3 Terrestrial Solar Irradiation
591(3)
12.10 Summary
594(4)
References
598(1)
Chapter 13 Radiation Exchange Between Surfaces
599(1)
13.1 The View Factor
600(1)
13.1.1 The View Factor Integral
600(7)
13.1.2 View Factor Relations
607(3)
13.2 Blackbody Radiation Exchange
610(4)
133 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
614(27)
133.1 Net Radiation Exchange at a Surface
615(16)
13.3.2 Radiation Exchange Between Surfaces
616(6)
13.3.3 The Two-Surface Enclosure
622(2)
13.3.4 Two-Surface Enclosures in Series and Radiation Shields
624(2)
13.3.5 The Reradiating Surface
626(5)
13.4 Multimode Heat Transfer
631(3)
13.5 Implications of the Simplifying Assumptions
634(1)
13.6 Radiation Exchange with Participating Media
634(5)
13.6.1 Volumetric Absorption
634(1)
13.6.2 Gaseous Emission and Absorption
635(4)
13.7 Summary
639(1)
References
640(1)
Chapter 14 Diffusion Mass Transfer
641(14)
14.1 Physical Origins and Rate Equations
642(5)
14.1.1 Physical Origins
642(1)
14.1.2 Mixture Composition
643(1)
14.1.3 Fick's Law of Diffusion
644(1)
14.1.4 Mass Diffusivity
645(2)
14.2 Mass Transfer in Nonstationary Media
647(8)
14.2.1 Absolute and Diffusive Species Fluxes
647(3)
14.2.2 Evaporation in a Column
650(5)
143 The Stationary Medium Approximation
655(26)
14.4 Conservation of Species for a Stationary Medium
655(7)
14.4.1 Conservation of Species for a Control Volume
656(1)
14.4.2 The Mass Diffusion Equation
656(2)
14.4.3 Stationary Media with Specified Surface Concentrations
658(4)
14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces
662(8)
14.5.1 Evaporation and Sublimation
663(1)
14.5.2 Solubility of Gases in Liquids and Solids
663(5)
14.5.3 Catalytic Surface Reactions
668(2)
14.6 Mass Diffusion with Homogeneous Chemical Reactions
670(3)
14.7 Transient Diffusion
673(6)
14.8 Summary
679(1)
References
680(48)
Appendix A Thermophysical Properties of Matter 681(32)
Appendix D Mathematical Relations and Functions 713(6)
Appendix C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 719(6)
Appendix D The Gauss---Seidel Method 725(2)
Appendix E The Convection Transfer Equations 727(4)
E.1 Conservation of Mass
728(1)
E.2 Newton's Second Law of Motion
728(1)
E.3 Conservation of Energy
729(1)
E.4 Conservation of Species
730(1)
Appendix F Boundary Layer Equations for Turbulent Flow 731(4)
Appendix G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 735(4)
Conversion Factors 739(1)
Physical Constants 740(1)
Index 741
Ted Bergman received his Ph.D. from Purdue University, and has been a faculty member at the University of Kansas (2012 - present), the University of Connecticut (1996 - 2012), and The University of Texas at Austin (1985 - 1996). He directed the Thermal Transport Processes Program at the U.S. National Science Foundation from 2008 to 2010. Early in his career, Dr. Bergman designed the cooling systems of large electric power generation stations. Adrienne Lavine is Professor and past Department Chair (2006 - 2011) in the Mechanical and Aerospace Engineering Department at the University of California, Los Angeles. She began her academic career there in 1984 as an Assistant Professor after obtaining her Ph.D. in Mechanical Engineering from the University of California, Berkeley.