Muutke küpsiste eelistusi

Fundamentals of High-Dimensional Statistics: With Exercises and R Labs 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 355 pages, kõrgus x laius: 235x155 mm, kaal: 569 g, 21 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 34 illus., 21 illus. in color., 1 Paperback / softback
  • Sari: Springer Texts in Statistics
  • Ilmumisaeg: 18-Nov-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030737942
  • ISBN-13: 9783030737948
Teised raamatud teemal:
  • Pehme köide
  • Hind: 81,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 95,44 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 355 pages, kõrgus x laius: 235x155 mm, kaal: 569 g, 21 Illustrations, color; 13 Illustrations, black and white; XIV, 355 p. 34 illus., 21 illus. in color., 1 Paperback / softback
  • Sari: Springer Texts in Statistics
  • Ilmumisaeg: 18-Nov-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030737942
  • ISBN-13: 9783030737948
Teised raamatud teemal:

This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.

Preface.- Notation.- Introduction.- Linear Regression.- Graphical
Models.- Tuning-Parameter Calibration.- Inference.- Theory I:
Prediction.- Theory II: Estimation and Support Recovery.- A Solutions.- B
Mathematical Background.- Bibliography.- Index. 
Johannes Lederer is a Professor of Statistics at the Ruhr-University Bochum, Germany. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught high-dimensional statistics to applied and mathematical audiences alike, e.g. as a Visiting Professor at the Institute of Statistics, Biostatistics, and Actuarial Sciences at UC Louvain, and at the University of Hong Kong Business School.