Muutke küpsiste eelistusi

Fundamentals of Jet Propulsion with Applications [Pehme köide]

(University of Virginia)
  • Formaat: Paperback / softback, 658 pages, kõrgus x laius x paksus: 254x178x30 mm, kaal: 1100 g
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 23-Aug-2010
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521154170
  • ISBN-13: 9780521154178
Teised raamatud teemal:
  • Formaat: Paperback / softback, 658 pages, kõrgus x laius x paksus: 254x178x30 mm, kaal: 1100 g
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 23-Aug-2010
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521154170
  • ISBN-13: 9780521154178
Teised raamatud teemal:
Fundamentals of Jet Propulsion with Applications is an introductory text in air-breathing jet propulsion including ramjets, turbojets, turbofans, and propjets. Aimed at upper-level undergraduate and graduate students, the book provides coverage of the basic operating principles, from cycle analysis through component design and system matching. A basic understanding of fluid mechanics and thermodynamics is assumed, although many principles are thoroughly reviewed. Numerous examples and nearly 300 homework problems based on modern engines make this book an ideal teaching tool, as well as a valuable reference for practicing engineers. A CD included with the book contains example files and software to support the text.

Fundamentals and Applications of Jet Propoulsion is an introductory text in air-breathing jet propulsion. Coverage moves from cycle analysis through component design and system matching. Directed at upper-level undergraduate and graduate students, the book assumes a basic understanding of fluid mechanics and thermodynamics is assumed, although many principles are thoroughly reviewed. Numerous examples and nearly 300 homework problems based on modern engines make this book an ideal teaching tool, as well as a valuable reference for practising engineers. A CD included with the book contains example files and software.

Arvustused

'... This reviewer said of the first edition of this book that 'it deserves to be used wherever aircraft propulsion is taught'; and should enjoy a long and useful life. It is therefore now a pleasure to welcome the second edition ... Like the first edition, this book is highly recommended to all interested in the concepts and design issues of modern jet engines ...'. The Aeronautical Journal The Aeronautical Journal

Muu info

Fundamentals of Jet Propulsion with Applications is an introductory 2005 text in air-breathing jet propulsion including ramjets, turbojets, turbofans and propjets.
Preface xv
Foreword xix
Part I Cycle Analysis
1 Introduction
3(43)
1.1 History of Propulsion Devices and Turbomachines
3(7)
1.2 Cycles
10(6)
1.2.1 Brayton Cycle
10(3)
1.2.2 Brayton Cycle with Regeneration
13(1)
1.2.3 Intercooling
14(1)
1.2.4 Steam-Topping Cycle
15(1)
1.3 Classification of Engines
16(18)
1.3.1 Ramjet
16(1)
1.3.2 Turbojet
17(2)
1.3.3 Turbojet with Afterburner
19(1)
1.3.4 Turbofan
20(5)
1.3.5 Turbofan with Afterburner
25(2)
1.3.6 Turboprop
27(2)
1.3.7 Unducted Fan (UDF)
29(1)
1.3.8 Turboshaft
29(1)
1.3.9 Power-Generation Gas Turbines
30(2)
1.3.10 Comparison of Engine Types
32(2)
1.4 Engine Thrust
34(7)
1.4.1 Turbojet
35(3)
1.4.2 Turbofan with a Fan Exhaust
38(2)
1.4.3 Turboprop
40(1)
1.5 Performance Measures
41(1)
1.5.1 Propulsion Measures
41(1)
1.5.2 Power-Generation Measures
42(1)
1.6 Summary
42(4)
2 Ideal Cycle Analysis
46(88)
2.1 Introduction
46(1)
2.2 Components
47(23)
2.2.1 Diffuser
48(3)
2.2.2 Compressor
51(2)
2.2.3 Fan
53(2)
2.2.4 Turbine
55(1)
2.2.5 Propeller
56(3)
2.2.6 Shaft
59(1)
2.2.7 Combustor
59(2)
2.2.8 Afterburner
61(2)
2.2.9 Primary Nozzle
63(2)
2.2.10 Fan Nozzle
65(1)
2.2.11 Bypass Duct
66(1)
2.2.12 Bypass Mixer
67(1)
2.2.13 Exhaust for a Power-Generation Gas Turbine
68(2)
2.3 Cycle Analysis
70(54)
2.3.1 Ramjet
71(7)
2.3.2 Turbojet
78(13)
2.3.3 Turbofan
91(22)
2.3.4 Turboprop
113(6)
2.3.5 Power-Generation Gas Turbine
119(5)
2.4 Summary
124(10)
3 Non-ideal Cycle Analysis
134(75)
3.1 Introduction
134(1)
3.1.1 Variable Specific Heats
134(1)
3.2 Component Losses
135(20)
3.2.1 Diffuser
135(2)
3.2.2 Compressor
137(4)
3.2.3 Fan
141(1)
3.2.4 Turbine
141(2)
3.2.5 Propeller
143(1)
3.2.6 Shaft
144(1)
3.2.7 Combustor
145(1)
3.2.8 Afterburner
146(1)
3.2.9 Primary Nozzle
147(3)
3.2.10 Fan Nozzle
150(1)
3.2.11 Bypass Duct
151(1)
3.2.12 Bypass Mixer
152(1)
3.2.13 Power Turbine Exhaust
153(1)
3.2.14 Summary of Nonideal Effects and Simple Parameter Models in Components
154(1)
3.3 Cycle Analysis
155(27)
3.3.1 General Approach
155(1)
3.3.2 Examples
156(26)
3.4 Use of Cycle Analysis in Preliminary Design
182(1)
3.5 Summary
182(27)
Part II Component Analysis
4 Diffusers
209(35)
4.1 Introduction
209(1)
4.2 Subsonic
210(6)
4.2.1 External Flow Patterns
210(1)
4.2.2 Limits on Pressure Rise
211(3)
4.2.3 Fanno Line Flow
214(1)
4.2.4 Combined Area Changes and Friction
215(1)
4.3 Supersonic
216(19)
4.3.1 Shocks
216(9)
4.3.2 Internal Area Considerations
225(4)
4.3.3 Additive Drag
229(3)
4.3.4 "Starting" an Inlet
232(3)
4.4 Performance Map
235(1)
4.5 Summary
236(8)
5 Nozzles
244(32)
5.1 Introduction
244(1)
5.2 Nonideal Equations
244(2)
5.2.1 Primary Nozzle
244(1)
5.2.2 Fan Nozzle
245(1)
5.2.3 Effects of Efficiency on Nozzle Performance
245(1)
5.3 Converging Nozzle
246(1)
5.4 Converging-Diverging Nozzle
247(9)
5.5 Effects of Pressure Ratios on Engine Performance
256(2)
5.6 Variable Nozzle
258(2)
5.7 Performance Maps
260(5)
5.7.1 Dimensional Analysis
260(1)
5.7.2 Trends
261(4)
5.8 Thrust Reversers and Vectoring
265(5)
5.8.1 Reversers
265(2)
5.8.2 Vectoring
267(3)
5.9 Summary
270(6)
6 Axial Flow Compressors and Fans
276(98)
6.1 Introduction
276(1)
6.2 Geometry
277(6)
6.3 Velocity Polygons or Triangles
283(3)
6.4 Single-Stage Energy Analysis
286(13)
6.4.1 Total Pressure Ratio
287(1)
6.4.2 Percent Reaction
287(1)
6.4.3 Incompressible Flow
288(1)
6.4.4 Relationships of Velocity Polygons to Percent Reaction and Pressure Ratio
289(10)
6.5 Performance Maps
299(4)
6.5.1 Dimensional Analysis
299(1)
6.5.2 Trends
300(1)
6.5.3 Experimental Data
301(1)
6.5.4 Mapping Conventions
302(1)
6.5.5 Surge Control
303(1)
6.6 Limits on Stage Pressure Ratio
303(4)
6.7 Variable Stators
307(5)
6.7.1 Theoretical Reasons
307(5)
6.7.2 Turning Mechanism
312(1)
6.8 Twin Spools
312(4)
6.8.1 Theoretical Reasons
312(2)
6.8.2 Mechanical Implementation
314(1)
6.8.3 Three Spools
315(1)
6.9 Radial Equilibrium
316(4)
6.9.1 Differential Analysis
316(1)
6.9.2 Free Vortex
317(1)
6.9.3 Constant Reaction
318(2)
6.10 Streamline Analysis Method
320(11)
6.10.1 Flow Geometry
321(1)
6.10.2 Working Equations
322(9)
6.11 Performance of a Compressor Stage
331(24)
6.11.1 Velocity Polygons
332(3)
6.11.2 Lift and Drag Coefficients
335(5)
6.11.3 Forces
340(1)
6.11.4 Relationship of Blade Loading and Performance
341(1)
6.11.5 Effects of Parameters
342(4)
6.11.6 Empiricism Using Cascade Data
346(5)
6.11.7 Further Empiricism
351(3)
6.11.8 Implementation of General Method
354(1)
6.12 Summary
355(19)
7 Centrifugal Compressors
374(32)
7.1 Introduction
374(1)
7.2 Geometry
374(4)
7.3 Velocity Polygons or Triangles
378(2)
7.4 Single-Stage Energy Analysis
380(10)
7.4.1 Total Pressure Ratio
381(1)
7.4.2 Incompressible Flow (Hydraulic pumps)
381(1)
7.4.3 Slip
382(4)
7.4.4 Relationships of Velocity Polygons to Pressure Ratio
386(4)
7.5 Performance Maps
390(1)
7.5.1 Dimensional Analysis
390(1)
7.5.2 Mapping Conventions
390(1)
7.6 Impeller Design Geometries
391(3)
7.6.1 Eye Diameter
392(1)
7.6.2 Basic Blade Shapes
392(1)
7.6.3 Blade Stresses
392(1)
7.6.4 Number of Blades
393(1)
7.6.5 Blade Design
394(1)
7.7 Vaned Diffusers
394(3)
7.8 Summary
397(9)
8 Axial Flow Turbines
406(34)
8.1 Introduction
406(1)
8.2 Geometry
407(6)
8.2.1 Configuration
407(2)
8.2.2 Comparison with Axial Flow Compressors
409(4)
8.3 Velocity Polygons or Triangles
413(3)
8.4 Single-Stage Energy Analysis
416(9)
8.4.1 Total Pressure Ratio
417(1)
8.4.2 Percent Reaction
417(1)
8.4.3 Incompressible Flow (Hydraulic Turbines)
418(1)
8.4.4 Relationships of Velocity Polygons to Percent Reaction and Performance
419(6)
8.5 Performance Maps
425(2)
8.5.1 Dimensional Analysis
425(1)
8.5.2 Mapping Conventions
425(2)
8.6 Thermal Limits of Blades and Vanes
427(6)
8.6.1 Blade Cooling
428(1)
8.6.2 Blade and Vane Materials
429(1)
8.6.3 Blade and Vane Manufacture
430(3)
8.7 Streamline Analysis Method
433(1)
8.8 Summary
434(6)
9 Combustors and Afterburners
440(31)
9.1 Introduction
440(1)
9.2 Geometries
441(6)
9.2.1 Primary Combustors
441(4)
9.2.2 Afterburners
445(2)
9.3 Flame Stability, Ignition, and Engine Starting
447(2)
9.3.1 Flame Stability
447(1)
9.3.2 Ignition and Engine Starting
448(1)
9.4 Adiabatic Flame Temperature
449(7)
9.4.1 Chemistry
450(1)
9.4.2 Thermodynamics
451(5)
9.5 Pressure Losses
456(5)
9.5.1 Rayleigh Line Flow
456(1)
9.5.2 Fanno Line Flow
457(1)
9.5.3 Combined Heat Addition and Friction
458(1)
9.5.4 Flow with a Drag Object
459(2)
9.6 Performance Maps
461(2)
9.6.1 Dimensional Analysis
461(1)
9.6.2 Trends
462(1)
9.7 Fuel Types and Properties
463(2)
9.8 Summary
465(6)
10 Ducts and Mixers
471(10)
10.1 Introduction
471(1)
10.2 Total Pressure Losses
471(6)
10.2.1 Fanno Line Flow
471(2)
10.2.2 Mixing Process
473(2)
10.2.3 Flow with a Drag Object
475(2)
10.3 Summary
477(4)
Part III System Matching and Analysis
11 Matching of Gas Turbine Components
481(46)
11.1 Introduction
481(1)
11.2 Component Matching
482(26)
11.2.1 Gas Generator
482(2)
11.2.2 Jet Engine
484(2)
11.2.3 Power-Generation Gas Turbine
486(1)
11.2.4 Component Modeling
487(5)
11.2.5 Solution of Matching Problem
492(7)
11.2.6 Other Applications
499(1)
11.2.7 Dynamic or Transient Response
499(9)
11.3 Matching of Engine and Aircraft
508(3)
11.4 Use of Matching and Cycle Analysis in Second-Stage Design
511(1)
11.5 Summary
512(15)
Part IV Appendixes
Appendix A Standard Atmosphere
527(3)
Appendix B Isentropic Flow Tables
530(18)
Appendix C Fanno Line Flow Tables
548(10)
Appendix D Rayleigh Line Flow Tables
558(10)
Appendix E Normal Shock Flow Tables
568(15)
Appendix F Common Conversions
583(2)
Appendix G Notes on Iteration Methods
585(6)
G.1 Introduction
585(1)
G.2 Regula Falsi
585(3)
G.3 Successive Substitutions
588(3)
Appendix H One-Dimensional Compressible Flow
591(22)
H.1 Introduction
591(1)
H.2 Ideal Gas Equations and Stagnation Properties
591(2)
H.3 Variable Specific Heats
593(2)
H.4 Isentropic Flow with Area Change
595(2)
H.5 Fanno Line Flow
597(1)
H.6 Rayleigh Line Flow
598(2)
H.7 Normal Shocks
600(1)
H.8 Oblique Planar Shocks
601(3)
H.9 Flow with a Drag Object
604(1)
H.10 Mixing Processes
605(2)
H.11 Generalized One-Dimensional Compressible Flow
607(1)
H.12 Combined Area Changes and Friction
608(1)
H.13 Combined Heat Addition and Friction
609(1)
H.14 Combined Area Changes, Heat Addition, and Friction
610(3)
Appendix I Turbomachinery Fundamentals
613(10)
I.1 Introduction
613(1)
I.2 Single-Stage Energy Analysis
613(1)
I.2.1 Total Pressure Ratio
613(5)
I.2.2 Percent Reaction
618(1)
I.2.3 Incompressible Flow
618(2)
I.3 Similitude
620(1)
I.3.1 Dimensional Analysis - Compressible Flow
620(3)
References 623(5)
Answers to Selected Problems 628(3)
Index 631
Ronald D. Flack joined the faculty of the University of Virginia's School of Engineering and Applied Science in the mechanical and aerospace engineering department in 1976. He has authored more than 100 journal publications and more than 175 reports and papers. He has served as the chair of MAE and as director of the Rotating Machinery and Controls Industrial Research Program (ROMAC). Dr Flack has been chair of the ASME IGTI Education Committee and chair of the ASME regional committee of ME department heads, and he is an ASME Fellow. His research interests include experimental internal flows in turbomachines and fluid film bearings, leading to the extended life of turbomachines by reducing forces and vibrations and improved hydraulic efficiency of turbomachines.